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TensorFlow 机器学习 Cookbook (version : 0.1.0)


	TensorFlow (i.e., TF)::

	在2015年的时候已经成为开源项目, 自从那之后它已经成为Github中starred最多的机器学习库. TensorFlow的受欢迎度主要归功于它能帮助程序员创造计算图(computational graphs), 自动微分 (automatic differentation) 和 可定制性 (customizability). 由于这些特性，TensorFlow是一个强有力的灵活性高的工具,  用于解决很多机器学习的问题.





本教程阐述很多机器学习算法, 以及如何把它们应用到实际情况中, 以及如何诠释所得到的结果.


重要


	第一章: 从TensorFlow开始 (Getting Started), 介绍主要tensorflow的对象与概念. 我们介绍张量, 变量和占位符. 我们也会展示如何在tensorflow中使用矩阵和其他的数学操作. 在本章的末尾，我们会展示如何获取数据资源.


	第二章: TensorFlow方式 (TF Way), 阐述如何用多种方式将第一章中所有的算法成分关联成一个计算图并创造出一个简单的分类器. 在阐述的过程中, 我们会介绍计算图 (computational graphs), 损失函数 (loss functions), 反向传播 (back propagation), 以及训练数据.


	第三章: 线性回归 (Linear Regression), 本章着重强调如何使用tensorflow来探索不同的线性回归技巧, 比如Deming, lasso, ridge, elastic net 和 logistic regression. 我们会在计算图中展示如何应用它们.


	第四章: 支持向量机 (Support Vector Machine), 介绍支持向量机 (SVMs) 然后展示如何用tensorflow去运用线性SVMs, 非线性SVMs和多类SVMs.


	第五章: 最近邻方法 (NNM), 展示如何运用数值度量，文本度量和比例距离函数使用最近邻技巧. 我们使用最近邻技巧来完成地址记录匹配和从MNIST数据库中对手写数字进行分类.


	第六章: 神经网络 (Neural Networks), 介绍了从操作门 (operational gates) 和激活函数 (activation function) 的概念开始, 在tensorflow中如何运用神经网络. 然后我们展示一个很浅神经元然后展示如何建立不同类型的层. 在本章的末尾, 我们会教tensorflow通过神经网络的方法玩井字棋(tic-tac-toe).


	第七章: 自然语言处理 (NLP), 本章展示了运用tensorflow不同文本的处理方法. 我们会展示如何在文本处理中使用Bag of Words (BoW) 模型和TF-IDF (Term Frequency-Inverse Document Frequency) 模型. 我们然后会用CBOW (Continuous Bag of Words) 和Skip-Gram模型来介绍神经元完了文本表达, 然后运用这些技巧到Word2Vec和Doc2Vec上, 用于解决实际结果预测.


	第八章: 卷积神经网络 (CNN), 通过展示如何通过使用卷积神经网络 (convolutional neural networks) CNNs模型将神经网络运用到图像处理上. 我们诠释了如何为MNIST数字识别构建一个简单卷积神经网络模型, 然后在CIFAR-10任务中把它扩展到颜色识别. 我们也会展示如何把之前训练过得图像识别模型扩展到自定义任务当中. 在本章的末尾，我们会在tensorflow中解释 stylenet/neural style和deep-dream 算法.


	第九章: 递归神经网络 (RNN), 会展示如何在tensorflow中运用递归神经元(recurrent neural networks). 我们会展示如何进行垃圾文本预测, 然后将递归神经网络模型扩展到基于莎士比亚文本生成. 我们也会训练段对段模型 (sequence to sequence model), 用于德语英语的翻译. 在本章的末尾, 我们也会展示Siamese递归神经网络用于地址记录匹配的用法.


	第十章: TensorFlow的应用技巧, 本章将会给出将TensorFlow应用到开发环境中, 如何利用多过程设备(比如GPUs), 然后将TensorFlow分布在多个机器上.


	第十一章: TensorFlow的更多功能, 通过阐述如何运行k-means, genetic算法来展示TensorFlow的多面性, 解决系统的常微分方程. 我们也展示Tensorboard的多处使用, 以及如何显示计算图度量.
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TensorFlow模块介绍

Top-level module of TensorFlow. By convention, we refer to this module as
tf instead of tensorflow, following the common practice of importing
TensorFlow via the command import tensorflow as tf.

The primary function of this module is to import all of the public TensorFlow
interfaces into a single place. The interfaces themselves are located in
sub-modules, as described below.

Note that the file __init__.py in the TensorFlow source code tree is actually
only a placeholder to enable test cases to run. The TensorFlow build replaces
this file with a file generated from [api_template.__init__.py](https://www.github.com/tensorflow/tensorflow/blob/master/tensorflow/api_template.__init__.py)


	
class tensorflow.AggregationMethod

	基类：object

A class listing aggregation methods used to combine gradients.

Computing partial derivatives can require aggregating gradient
contributions. This class lists the various methods that can
be used to combine gradients in the graph.

The following aggregation methods are part of the stable API for
aggregating gradients:


	ADD_N: All of the gradient terms are summed as part of one
operation using the “AddN” op (see tf.add_n). This
method has the property that all gradients must be ready and
buffered separately in memory before any aggregation is performed.


	DEFAULT: The system-chosen default aggregation method.




The following aggregation methods are experimental and may not
be supported in future releases:


	EXPERIMENTAL_TREE: Gradient terms are summed in pairs using
using the “AddN” op. This method of summing gradients may reduce
performance, but it can improve memory utilization because the
gradients can be released earlier.





	
ADD_N = 0

	




	
DEFAULT = 0

	




	
EXPERIMENTAL_ACCUMULATE_N = 2

	




	
EXPERIMENTAL_TREE = 1

	








	
tensorflow.Assert(condition, data, summarize=None, name=None)

	Asserts that the given condition is true.

If condition evaluates to false, print the list of tensors in data.
summarize determines how many entries of the tensors to print.

NOTE: In graph mode, to ensure that Assert executes, one usually attaches
a dependency:

```python
# Ensure maximum element of x is smaller or equal to 1
assert_op = tf.Assert(tf.less_equal(tf.reduce_max(x), 1.), [x])
with tf.control_dependencies([assert_op]):


… code using x …




```


	参数

	
	condition – The condition to evaluate.


	data – The tensors to print out when condition is false.


	summarize – Print this many entries of each tensor.


	name – A name for this operation (optional).






	返回

	An Operation that, when executed, raises a
tf.errors.InvalidArgumentError if condition is not true.
@compatibility(eager)
returns None
@end_compatibility



	返回类型

	assert_op



	Raises

	
	@compatibility(eager)


	tf.errors.InvalidArgumentError if condition is not true


	@end_compatibility








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
class tensorflow.CriticalSection(name=None, shared_name=None, critical_section_def=None, import_scope=None)

	基类：object

Critical section.

A CriticalSection object is a resource in the graph which executes subgraphs
in serial order.  A common example of a subgraph one may wish to run
exclusively is the one given by the following function:

```python
v = resource_variable_ops.ResourceVariable(0.0, name=”v”)


	def count():

	value = v.read_value()
with tf.control_dependencies([value]):



	with tf.control_dependencies([v.assign_add(1)]):

	return tf.identity(value)












```

Here, a snapshot of v is captured in value; and then v is updated.
The snapshot value is returned.

If multiple workers or threads all execute count in parallel, there is no
guarantee that access to the variable v is atomic at any point within
any thread’s calculation of count.  In fact, even implementing an atomic
counter that guarantees that the user will see each value 0, 1, …, is
currently impossible.

The solution is to ensure any access to the underlying resource v is
only processed through a critical section:

`python
cs = CriticalSection()
f1 = cs.execute(count)
f2 = cs.execute(count)
output = f1 + f2
session.run(output)
`
The functions f1 and f2 will be executed serially, and updates to v
will be atomic.

NOTES

All resource objects, including the critical section and any captured
variables of functions executed on that critical section, will be
colocated to the same device (host and cpu/gpu).

When using multiple critical sections on the same resources, there is no
guarantee of exclusive access to those resources.  This behavior is disallowed
by default (but see the kwarg exclusive_resource_access).

For example, running the same function in two separate critical sections
will not ensure serial execution:

```python
v = tf.compat.v1.get_variable(“v”, initializer=0.0, use_resource=True)
def accumulate(up):


x = v.read_value()
with tf.control_dependencies([x]):



	with tf.control_dependencies([v.assign_add(up)]):

	return tf.identity(x)












	ex1 = CriticalSection().execute(

	accumulate, 1.0, exclusive_resource_access=False)



	ex2 = CriticalSection().execute(

	accumulate, 1.0, exclusive_resource_access=False)





bad_sum = ex1 + ex2
sess.run(v.initializer)
sess.run(bad_sum)  # May return 0.0
```

Creates a critical section.


	
execute(fn, exclusive_resource_access=True, name=None)

	Execute function fn() inside the critical section.

fn should not accept any arguments.  To add extra arguments to when
calling fn in the critical section, create a lambda:

`python
critical_section.execute(lambda: fn(*my_args, **my_kwargs))
`


	参数

	
	fn – The function to execute.  Must return at least one tensor.


	exclusive_resource_access – Whether the resources required by
fn should be exclusive to this CriticalSection.  Default: True.
You may want to set this to False if you will be accessing a
resource in read-only mode in two different CriticalSections.


	name – The name to use when creating the execute operation.






	返回

	The tensors returned from fn().



	Raises

	
	ValueError – If fn attempts to lock this CriticalSection in any nested
or lazy way that may cause a deadlock.


	ValueError – If exclusive_resource_access == True and
another CriticalSection has an execution requesting the same
resources as fn`.  Note, even if exclusive_resource_access is
True, if another execution in another CriticalSection was created
without exclusive_resource_access=True, a ValueError will be raised.













	
name

	








	
class tensorflow.DType(self: tensorflow.python._dtypes.DType, arg0: object) → None

	基类：tensorflow.python._dtypes.DType

Represents the type of the elements in a Tensor.

The following DType objects are defined:


	tf.float16: 16-bit half-precision floating-point.


	tf.float32: 32-bit single-precision floating-point.


	tf.float64: 64-bit double-precision floating-point.


	tf.bfloat16: 16-bit truncated floating-point.


	tf.complex64: 64-bit single-precision complex.


	tf.complex128: 128-bit double-precision complex.


	tf.int8: 8-bit signed integer.


	tf.uint8: 8-bit unsigned integer.


	tf.uint16: 16-bit unsigned integer.


	tf.uint32: 32-bit unsigned integer.


	tf.uint64: 64-bit unsigned integer.


	tf.int16: 16-bit signed integer.


	tf.int32: 32-bit signed integer.


	tf.int64: 64-bit signed integer.


	tf.bool: Boolean.


	tf.string: String.


	tf.qint8: Quantized 8-bit signed integer.


	tf.quint8: Quantized 8-bit unsigned integer.


	tf.qint16: Quantized 16-bit signed integer.


	tf.quint16: Quantized 16-bit unsigned integer.


	tf.qint32: Quantized 32-bit signed integer.


	tf.resource: Handle to a mutable resource.


	tf.variant: Values of arbitrary types.




The tf.as_dtype() function converts numpy types and string type
names to a DType object.


	
as_numpy_dtype

	Returns a Python type object based on this DType.






	
base_dtype

	Returns a non-reference DType based on this DType.






	
is_compatible_with(other)

	Returns True if the other DType will be converted to this DType.

The conversion rules are as follows:

`python
DType(T)       .is_compatible_with(DType(T))        == True
`


	参数

	other – A DType (or object that may be converted to a DType).



	返回

	True if a Tensor of the other DType will be implicitly converted to
this DType.










	
limits

	Return intensity limits, i.e.

(min, max) tuple, of the dtype.
:param clip_negative: bool, optional If True, clip the negative range (i.e.


return 0 for min intensity) even if the image dtype allows negative
values. Returns





	参数

	max (min,) – tuple Lower and upper intensity limits.










	
max

	Returns the maximum representable value in this data type.


	Raises

	TypeError – if this is a non-numeric, unordered, or quantized type.










	
min

	Returns the minimum representable value in this data type.


	Raises

	TypeError – if this is a non-numeric, unordered, or quantized type.










	
real_dtype

	Returns the DType corresponding to this DType’s real part.










	
tensorflow.DeviceSpec

	tensorflow.python.framework.device_spec.DeviceSpecV2 的别名






	
class tensorflow.GradientTape(persistent=False, watch_accessed_variables=True)

	基类：object

Record operations for automatic differentiation.

Operations are recorded if they are executed within this context manager and
at least one of their inputs is being “watched”.

Trainable variables (created by tf.Variable or tf.compat.v1.get_variable,
where trainable=True is default in both cases) are automatically watched.
Tensors can be manually watched by invoking the watch method on this context
manager.

For example, consider the function y = x * x. The gradient at x = 3.0 can
be computed as:

```python
x = tf.constant(3.0)
with tf.GradientTape() as g:


g.watch(x)
y = x * x




dy_dx = g.gradient(y, x) # Will compute to 6.0
```

GradientTapes can be nested to compute higher-order derivatives. For example,

```python
x = tf.constant(3.0)
with tf.GradientTape() as g:


g.watch(x)
with tf.GradientTape() as gg:


gg.watch(x)
y = x * x




dy_dx = gg.gradient(y, x)     # Will compute to 6.0




d2y_dx2 = g.gradient(dy_dx, x)  # Will compute to 2.0
```

By default, the resources held by a GradientTape are released as soon as
GradientTape.gradient() method is called. To compute multiple gradients over
the same computation, create a persistent gradient tape. This allows multiple
calls to the gradient() method as resources are released when the tape object
is garbage collected. For example:

```python
x = tf.constant(3.0)
with tf.GradientTape(persistent=True) as g:


g.watch(x)
y = x * x
z = y * y




dz_dx = g.gradient(z, x)  # 108.0 (4*x^3 at x = 3)
dy_dx = g.gradient(y, x)  # 6.0
del g  # Drop the reference to the tape
```

By default GradientTape will automatically watch any trainable variables that
are accessed inside the context. If you want fine grained control over which
variables are watched you can disable automatic tracking by passing
watch_accessed_variables=False to the tape constructor:

```python
with tf.GradientTape(watch_accessed_variables=False) as tape:


tape.watch(variable_a)
y = variable_a ** 2  # Gradients will be available for variable_a.
z = variable_b ** 3  # No gradients will be available since variable_b is


# not being watched.







```

Note that when using models you should ensure that your variables exist when
using watch_accessed_variables=False. Otherwise it’s quite easy to make your
first iteration not have any gradients:

```python
a = tf.keras.layers.Dense(32)
b = tf.keras.layers.Dense(32)


	with tf.GradientTape(watch_accessed_variables=False) as tape:

	
	tape.watch(a.variables)  # Since a.build has not been called at this point

	# a.variables will return an empty list and the
# tape will not be watching anything.





result = b(a(inputs))
tape.gradient(result, a.variables)  # The result of this computation will be


# a list of `None`s since a’s variables
# are not being watched.








```

Note that only tensors with real or complex dtypes are differentiable.

Creates a new GradientTape.


	参数

	
	persistent – Boolean controlling whether a persistent gradient tape
is created. False by default, which means at most one call can
be made to the gradient() method on this object.


	watch_accessed_variables – Boolean controlling whether the tape will
automatically watch any (trainable) variables accessed while the tape
is active. Defaults to True meaning gradients can be requested from any
result computed in the tape derived from reading a trainable Variable.
If False users must explicitly watch any `Variable`s they want to
request gradients from.









	
batch_jacobian(target, source, unconnected_gradients=<UnconnectedGradients.NONE: 'none'>, parallel_iterations=None, experimental_use_pfor=True)

	Computes and stacks per-example jacobians.

See [wikipedia article](http://en.wikipedia.org/wiki/jacobian_matrix_and_determinant) for the
definition of a Jacobian. This function is essentially an efficient
implementation of the following:

tf.stack([self.jacobian(y[i], x[i]) for i in range(x.shape[0])]).

Note that compared to GradientTape.jacobian which computes gradient of
each output value w.r.t each input value, this function is useful when
target[i,…] is independent of source[j,…] for j != i. This
assumption allows more efficient computation as compared to
GradientTape.jacobian. The output, as well as intermediate activations,
are lower dimensional and avoid a bunch of redundant zeros which would
result in the jacobian computation given the independence assumption.

Example usage:

```python
with tf.GradientTape() as g:


x = tf.constant([[1., 2.], [3., 4.]], dtype=tf.float32)
g.watch(x)
y = x * x




batch_jacobian = g.batch_jacobian(y, x)
# batch_jacobian is [[[2,  0], [0,  4]], [[6,  0], [0,  8]]]
```


	参数

	
	target – A tensor with rank 2 or higher and with shape [b, y1, …, y_n].
target[i,…] should only depend on source[i,…].


	source – A tensor with rank 2 or higher and with shape [b, x1, …, x_m].


	unconnected_gradients – a value which can either hold ‘none’ or ‘zero’ and
alters the value which will be returned if the target and sources are
unconnected. The possible values and effects are detailed in
‘UnconnectedGradients’ and it defaults to ‘none’.


	parallel_iterations – A knob to control how many iterations are dispatched
in parallel. This knob can be used to control the total memory usage.


	experimental_use_pfor – If true, uses pfor for computing the Jacobian. Else
uses a tf.while_loop.






	返回

	A tensor t with shape [b, y_1, …, y_n, x1, …, x_m] where t[i, …]
is the jacobian of target[i, …] w.r.t. source[i, …], i.e. stacked
per-example jacobians.



	Raises

	
	RuntimeError – If called on a non-persistent tape with eager execution
enabled and without enabling experimental_use_pfor.


	ValueError – If vectorization of jacobian computation fails or if first
dimension of target and source do not match.













	
gradient(target, sources, output_gradients=None, unconnected_gradients=<UnconnectedGradients.NONE: 'none'>)

	Computes the gradient using operations recorded in context of this tape.


	参数

	
	target – a list or nested structure of Tensors or Variables to be
differentiated.


	sources – a list or nested structure of Tensors or Variables. target
will be differentiated against elements in sources.


	output_gradients – a list of gradients, one for each element of
target. Defaults to None.


	unconnected_gradients – a value which can either hold ‘none’ or ‘zero’ and
alters the value which will be returned if the target and sources are
unconnected. The possible values and effects are detailed in
‘UnconnectedGradients’ and it defaults to ‘none’.






	返回

	a list or nested structure of Tensors (or IndexedSlices, or None),
one for each element in sources. Returned structure is the same as
the structure of sources.



	Raises

	
	RuntimeError – if called inside the context of the tape, or if called more
than once on a non-persistent tape.


	ValueError – if the target is a variable or if unconnected gradients is
called with an unknown value.













	
jacobian(target, sources, unconnected_gradients=<UnconnectedGradients.NONE: 'none'>, parallel_iterations=None, experimental_use_pfor=True)

	Computes the jacobian using operations recorded in context of this tape.

See [wikipedia article](http://en.wikipedia.org/wiki/jacobian_matrix_and_determinant) for the
definition of a Jacobian.

Example usage:

```python
with tf.GradientTape() as g:


x  = tf.constant([1.0, 2.0])
g.watch(x)
y = x * x




jacobian = g.jacobian(y, x)
# jacobian value is [[2., 0.], [0., 4.]]
```


	参数

	
	target – Tensor to be differentiated.


	sources – a list or nested structure of Tensors or Variables. target
will be differentiated against elements in sources.


	unconnected_gradients – a value which can either hold ‘none’ or ‘zero’ and
alters the value which will be returned if the target and sources are
unconnected. The possible values and effects are detailed in
‘UnconnectedGradients’ and it defaults to ‘none’.


	parallel_iterations – A knob to control how many iterations are dispatched
in parallel. This knob can be used to control the total memory usage.


	experimental_use_pfor – If true, vectorizes the jacobian computation. Else
falls back to a sequential while_loop. Vectorization can sometimes fail
or lead to excessive memory usage. This option can be used to disable
vectorization in such cases.






	返回

	A list or nested structure of Tensors (or None), one for each element in
sources. Returned structure is the same as the structure of sources.
Note if any gradient is sparse (IndexedSlices), jacobian function
currently makes it dense and returns a Tensor instead. This may change in
the future.



	Raises

	
	RuntimeError – If called on a non-persistent tape with eager execution
enabled and without enabling experimental_use_pfor.


	ValueError – If vectorization of jacobian computation fails.













	
reset()

	Clears all information stored in this tape.

Equivalent to exiting and reentering the tape context manager with a new
tape. For example, the two following code blocks are equivalent:

```
with tf.GradientTape() as t:


loss = loss_fn()





	with tf.GradientTape() as t:

	loss += other_loss_fn()





t.gradient(loss, …)  # Only differentiates other_loss_fn, not loss_fn

# The following is equivalent to the above
with tf.GradientTape() as t:


loss = loss_fn()
t.reset()
loss += other_loss_fn()




t.gradient(loss, …)  # Only differentiates other_loss_fn, not loss_fn
```

This is useful if you don’t want to exit the context manager for the tape,
or can’t because the desired reset point is inside a control flow construct:

```
with tf.GradientTape() as t:


loss = …
if loss > k:


t.reset()







```






	
stop_recording()

	Temporarily stops recording operations on this tape.

Operations executed while this context manager is active will not be
recorded on the tape. This is useful for reducing the memory used by tracing
all computations.

For example:


	```

	
	with tf.GradientTape(persistent=True) as t:

	loss = compute_loss(model)
with t.stop_recording():


# The gradient computation below is not traced, saving memory.
grads = t.gradient(loss, model.variables)












```


	Yields

	None



	Raises

	RuntimeError – if the tape is not currently recording.










	
watch(tensor)

	Ensures that tensor is being traced by this tape.


	参数

	tensor – a Tensor or list of Tensors.



	Raises

	ValueError – if it encounters something that is not a tensor.










	
watched_variables()

	Returns variables watched by this tape in order of construction.










	
class tensorflow.Graph

	基类：object

A TensorFlow computation, represented as a dataflow graph.

Graphs are used by tf.function`s to represent the function’s computations.
Each graph contains a set of `tf.Operation objects, which represent units of
computation; and tf.Tensor objects, which represent the units of data that
flow between operations.

### Using graphs directly (deprecated)

A tf.Graph can be constructed and used directly without a tf.function, as
was required in TensorFlow 1, but this is deprecated and it is recommended to
use a tf.function instead. If a graph is directly used, other deprecated
TensorFlow 1 classes are also required to execute the graph, such as a
tf.compat.v1.Session.

A default graph can be registered with the tf.Graph.as_default context
manager. Then, operations will be added to the graph instead of being executed
eagerly. For example:

```python
g = tf.Graph()
with g.as_default():


# Define operations and tensors in g.
c = tf.constant(30.0)
assert c.graph is g




```

tf.compat.v1.get_default_graph() can be used to obtain the default graph.

Important note: This class is not thread-safe for graph construction. All
operations should be created from a single thread, or external
synchronization must be provided. Unless otherwise specified, all methods
are not thread-safe.

A Graph instance supports an arbitrary number of “collections”
that are identified by name. For convenience when building a large
graph, collections can store groups of related objects: for
example, the tf.Variable uses a collection (named
tf.GraphKeys.GLOBAL_VARIABLES) for
all variables that are created during the construction of a graph. The caller
may define additional collections by specifying a new name.

Creates a new, empty Graph.


	
add_to_collection(name, value)

	Stores value in the collection with the given name.

Note that collections are not sets, so it is possible to add a value to
a collection several times.


	参数

	
	name – The key for the collection. The GraphKeys class contains many
standard names for collections.


	value – The value to add to the collection.













	
add_to_collections(names, value)

	Stores value in the collections given by names.

Note that collections are not sets, so it is possible to add a value to
a collection several times. This function makes sure that duplicates in
names are ignored, but it will not check for pre-existing membership of
value in any of the collections in names.

names can be any iterable, but if names is a string, it is treated as a
single collection name.


	参数

	
	names – The keys for the collections to add to. The GraphKeys class
contains many standard names for collections.


	value – The value to add to the collections.













	
as_default()

	Returns a context manager that makes this Graph the default graph.

This method should be used if you want to create multiple graphs
in the same process. For convenience, a global default graph is
provided, and all ops will be added to this graph if you do not
create a new graph explicitly.

Use this method with the with keyword to specify that ops created within
the scope of a block should be added to this graph. In this case, once
the scope of the with is exited, the previous default graph is set again
as default. There is a stack, so it’s ok to have multiple nested levels
of as_default calls.

The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that
thread, you must explicitly add a with g.as_default(): in that
thread’s function.

The following code examples are equivalent:

```python
# 1. Using Graph.as_default():
g = tf.Graph()
with g.as_default():


c = tf.constant(5.0)
assert c.graph is g




# 2. Constructing and making default:
with tf.Graph().as_default() as g:


c = tf.constant(5.0)
assert c.graph is g




```

If eager execution is enabled ops created under this context manager will be
added to the graph instead of executed eagerly.


	返回

	A context manager for using this graph as the default graph.










	
as_graph_def(from_version=None, add_shapes=False)

	Returns a serialized GraphDef representation of this graph.

The serialized GraphDef can be imported into another Graph
(using tf.import_graph_def) or used with the
[C++ Session API](../../api_docs/cc/index.md).

This method is thread-safe.


	参数

	
	from_version – Optional.  If this is set, returns a GraphDef containing
only the nodes that were added to this graph since its version
property had the given value.


	add_shapes – If true, adds an “_output_shapes” list attr to each node with
the inferred shapes of each of its outputs.






	返回

	A
[GraphDef](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
protocol buffer.



	Raises

	ValueError – If the graph_def would be too large.










	
as_graph_element(obj, allow_tensor=True, allow_operation=True)

	Returns the object referred to by obj, as an Operation or Tensor.

This function validates that obj represents an element of this
graph, and gives an informative error message if it is not.

This function is the canonical way to get/validate an object of
one of the allowed types from an external argument reference in the
Session API.

This method may be called concurrently from multiple threads.


	参数

	
	obj – A Tensor, an Operation, or the name of a tensor or operation. Can
also be any object with an _as_graph_element() method that returns a
value of one of these types. Note: _as_graph_element will be called
inside the graph’s lock and so may not modify the graph.


	allow_tensor – If true, obj may refer to a Tensor.


	allow_operation – If true, obj may refer to an Operation.






	返回

	The Tensor or Operation in the Graph corresponding to obj.



	Raises

	
	TypeError – If obj is not a type we support attempting to convert
to types.


	ValueError – If obj is of an appropriate type but invalid. For
example, an invalid string.


	KeyError – If obj is not an object in the graph.













	
building_function

	Returns True iff this graph represents a function.






	
clear_collection(name)

	Clears all values in a collection.


	参数

	name – The key for the collection. The GraphKeys class contains many
standard names for collections.










	
collections

	Returns the names of the collections known to this graph.






	
colocate_with(op, ignore_existing=False)

	Returns a context manager that specifies an op to colocate with.

Note: this function is not for public use, only for internal libraries.

For example:

```python
a = tf.Variable([1.0])
with g.colocate_with(a):


b = tf.constant(1.0)
c = tf.add(a, b)




```

b and c will always be colocated with a, no matter where a
is eventually placed.

NOTE Using a colocation scope resets any existing device constraints.

If op is None then ignore_existing must be True and the new
scope resets all colocation and device constraints.


	参数

	
	op – The op to colocate all created ops with, or None.


	ignore_existing – If true, only applies colocation of this op within the
context, rather than applying all colocation properties on the stack.
If op is None, this value must be True.






	Raises

	ValueError – if op is None but ignore_existing is False.



	Yields

	A context manager that specifies the op with which to colocate
newly created ops.










	
container(container_name)

	Returns a context manager that specifies the resource container to use.

Stateful operations, such as variables and queues, can maintain their
states on devices so that they can be shared by multiple processes.
A resource container is a string name under which these stateful
operations are tracked. These resources can be released or cleared
with tf.Session.reset().

For example:

```python
with g.container(‘experiment0’):


# All stateful Operations constructed in this context will be placed
# in resource container “experiment0”.
v1 = tf.Variable([1.0])
v2 = tf.Variable([2.0])
with g.container(“experiment1”):


# All stateful Operations constructed in this context will be
# placed in resource container “experiment1”.
v3 = tf.Variable([3.0])
q1 = tf.queue.FIFOQueue(10, tf.float32)




# All stateful Operations constructed in this context will be
# be created in the “experiment0”.
v4 = tf.Variable([4.0])
q1 = tf.queue.FIFOQueue(20, tf.float32)
with g.container(“”):


# All stateful Operations constructed in this context will be
# be placed in the default resource container.
v5 = tf.Variable([5.0])
q3 = tf.queue.FIFOQueue(30, tf.float32)







# Resets container “experiment0”, after which the state of v1, v2, v4, q1
# will become undefined (such as uninitialized).
tf.Session.reset(target, [“experiment0”])
```


	参数

	container_name – container name string.



	返回

	
	A context manager for defining resource containers for stateful ops,

	yields the container name.
















	
control_dependencies(control_inputs)

	Returns a context manager that specifies control dependencies.

Use with the with keyword to specify that all operations constructed
within the context should have control dependencies on
control_inputs. For example:

```python
with g.control_dependencies([a, b, c]):


# d and e will only run after a, b, and c have executed.
d = …
e = …




```

Multiple calls to control_dependencies() can be nested, and in
that case a new Operation will have control dependencies on the union
of control_inputs from all active contexts.

```python
with g.control_dependencies([a, b]):


# Ops constructed here run after a and b.
with g.control_dependencies([c, d]):


# Ops constructed here run after a, b, c, and d.







```

You can pass None to clear the control dependencies:

```python
with g.control_dependencies([a, b]):


# Ops constructed here run after a and b.
with g.control_dependencies(None):


# Ops constructed here run normally, not waiting for either a or b.
with g.control_dependencies([c, d]):


# Ops constructed here run after c and d, also not waiting
# for either a or b.










```

N.B. The control dependencies context applies only to ops that
are constructed within the context. Merely using an op or tensor
in the context does not add a control dependency. The following
example illustrates this point:

```python
# WRONG
def my_func(pred, tensor):


t = tf.matmul(tensor, tensor)
with tf.control_dependencies([pred]):


# The matmul op is created outside the context, so no control
# dependency will be added.
return t







# RIGHT
def my_func(pred, tensor):



	with tf.control_dependencies([pred]):

	# The matmul op is created in the context, so a control dependency
# will be added.
return tf.matmul(tensor, tensor)








```

Also note that though execution of ops created under this scope will trigger
execution of the dependencies, the ops created under this scope might still
be pruned from a normal tensorflow graph. For example, in the following
snippet of code the dependencies are never executed:


	```python

	loss = model.loss()
with tf.control_dependencies(dependencies):



	loss = loss + tf.constant(1)  # note: dependencies ignored in the

	# backward pass








return tf.gradients(loss, model.variables)





```

This is because evaluating the gradient graph does not require evaluating
the constant(1) op created in the forward pass.


	参数

	control_inputs – A list of Operation or Tensor objects which must be
executed or computed before running the operations defined in the
context.  Can also be None to clear the control dependencies.



	返回

	A context manager that specifies control dependencies for all
operations constructed within the context.



	Raises

	TypeError – If control_inputs is not a list of Operation or
Tensor objects.










	
create_op(op_type, inputs, dtypes=None, input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True, compute_device=True)

	Creates an Operation in this graph. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (compute_shapes). They will be removed in a future version.
Instructions for updating:
Shapes are always computed; don’t use the compute_shapes as it has no effect.

This is a low-level interface for creating an Operation. Most
programs will not call this method directly, and instead use the
Python op constructors, such as tf.constant(), which add ops to
the default graph.


	参数

	
	op_type – The Operation type to create. This corresponds to the
OpDef.name field for the proto that defines the operation.


	inputs – A list of Tensor objects that will be inputs to the Operation.


	dtypes – (Optional) A list of DType objects that will be the types of the
tensors that the operation produces.


	input_types – (Optional.) A list of DType`s that will be the types of the
tensors that the operation consumes. By default, uses the base `DType
of each input in inputs. Operations that expect reference-typed inputs
must specify input_types explicitly.


	name – (Optional.) A string name for the operation. If not specified, a
name is generated based on op_type.


	attrs – (Optional.) A dictionary where the key is the attribute name (a
string) and the value is the respective attr attribute of the
NodeDef proto that will represent the operation (an AttrValue
proto).


	op_def – (Optional.) The OpDef proto that describes the op_type that
the operation will have.


	compute_shapes – (Optional.) Deprecated. Has no effect (shapes are always
computed).


	compute_device – (Optional.) If True, device functions will be executed to
compute the device property of the Operation.






	Raises

	
	TypeError – if any of the inputs is not a Tensor.


	ValueError – if colocation conflicts with existing device assignment.






	返回

	An Operation object.










	
device(device_name_or_function)

	Returns a context manager that specifies the default device to use.

The device_name_or_function argument may either be a device name
string, a device function, or None:


	If it is a device name string, all operations constructed in
this context will be assigned to the device with that name, unless
overridden by a nested device() context.


	If it is a function, it will be treated as a function from
Operation objects to device name strings, and invoked each time
a new Operation is created. The Operation will be assigned to
the device with the returned name.


	If it is None, all device() invocations from the enclosing context
will be ignored.




For information about the valid syntax of device name strings, see
the documentation in
[DeviceNameUtils](https://www.tensorflow.org/code/tensorflow/core/util/device_name_utils.h).

For example:

```python
with g.device(‘/device:GPU:0’):


# All operations constructed in this context will be placed
# on GPU 0.
with g.device(None):


# All operations constructed in this context will have no
# assigned device.







# Defines a function from Operation to device string.
def matmul_on_gpu(n):



	if n.type == “MatMul”:

	return “/device:GPU:0”



	else:

	return “/cpu:0”









	with g.device(matmul_on_gpu):

	# All operations of type “MatMul” constructed in this context
# will be placed on GPU 0; all other operations will be placed
# on CPU 0.





```

N.B. The device scope may be overridden by op wrappers or
other library code. For example, a variable assignment op
v.assign() must be colocated with the tf.Variable v, and
incompatible device scopes will be ignored.


	参数

	device_name_or_function – The device name or function to use in the
context.



	Yields

	A context manager that specifies the default device to use for newly
created ops.



	Raises

	RuntimeError – If device scopes are not properly nested.










	
finalize()

	Finalizes this graph, making it read-only.

After calling g.finalize(), no new operations can be added to
g.  This method is used to ensure that no operations are added
to a graph when it is shared between multiple threads, for example
when using a tf.compat.v1.train.QueueRunner.






	
finalized

	True if this graph has been finalized.






	
get_all_collection_keys()

	Returns a list of collections used in this graph.






	
get_collection(name, scope=None)

	Returns a list of values in the collection with the given name.

This is different from get_collection_ref() which always returns the
actual collection list if it exists in that it returns a new list each time
it is called.


	参数

	
	name – The key for the collection. For example, the GraphKeys class
contains many standard names for collections.


	scope – (Optional.) A string. If supplied, the resulting list is filtered
to include only items whose name attribute matches scope using
re.match. Items without a name attribute are never returned if a
scope is supplied. The choice of re.match means that a scope without
special tokens filters by prefix.






	返回

	The list of values in the collection with the given name, or
an empty list if no value has been added to that collection. The
list contains the values in the order under which they were
collected.










	
get_collection_ref(name)

	Returns a list of values in the collection with the given name.

If the collection exists, this returns the list itself, which can
be modified in place to change the collection.  If the collection does
not exist, it is created as an empty list and the list is returned.

This is different from get_collection() which always returns a copy of
the collection list if it exists and never creates an empty collection.


	参数

	name – The key for the collection. For example, the GraphKeys class
contains many standard names for collections.



	返回

	The list of values in the collection with the given name, or an empty
list if no value has been added to that collection.










	
get_name_scope()

	Returns the current name scope.

For example:

```python
with tf.name_scope(‘scope1’):



	with tf.name_scope(‘scope2’):

	print(tf.compat.v1.get_default_graph().get_name_scope())








```
would print the string scope1/scope2.


	返回

	A string representing the current name scope.










	
get_operation_by_name(name)

	Returns the Operation with the given name.

This method may be called concurrently from multiple threads.


	参数

	name – The name of the Operation to return.



	返回

	The Operation with the given name.



	Raises

	
	TypeError – If name is not a string.


	KeyError – If name does not correspond to an operation in this graph.













	
get_operations()

	Return the list of operations in the graph.

You can modify the operations in place, but modifications
to the list such as inserts/delete have no effect on the
list of operations known to the graph.

This method may be called concurrently from multiple threads.


	返回

	A list of Operations.










	
get_tensor_by_name(name)

	Returns the Tensor with the given name.

This method may be called concurrently from multiple threads.


	参数

	name – The name of the Tensor to return.



	返回

	The Tensor with the given name.



	Raises

	
	TypeError – If name is not a string.


	KeyError – If name does not correspond to a tensor in this graph.













	
gradient_override_map(op_type_map)

	EXPERIMENTAL: A context manager for overriding gradient functions.

This context manager can be used to override the gradient function
that will be used for ops within the scope of the context.

For example:

```python
@tf.RegisterGradient(“CustomSquare”)
def _custom_square_grad(op, grad):


# …





	with tf.Graph().as_default() as g:

	c = tf.constant(5.0)
s_1 = tf.square(c)  # Uses the default gradient for tf.square.
with g.gradient_override_map({“Square”: “CustomSquare”}):



	s_2 = tf.square(s_2)  # Uses _custom_square_grad to compute the

	# gradient of s_2.












```


	参数

	op_type_map – A dictionary mapping op type strings to alternative op type
strings.



	返回

	A context manager that sets the alternative op type to be used for one
or more ops created in that context.



	Raises

	TypeError – If op_type_map is not a dictionary mapping strings to
strings.










	
graph_def_versions

	The GraphDef version information of this graph.

For details on the meaning of each version, see
[GraphDef](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto).


	返回

	A VersionDef.










	
is_feedable(tensor)

	Returns True if and only if tensor is feedable.






	
is_fetchable(tensor_or_op)

	Returns True if and only if tensor_or_op is fetchable.






	
name_scope(name)

	Returns a context manager that creates hierarchical names for operations.

A graph maintains a stack of name scopes. A with name_scope(…):
statement pushes a new name onto the stack for the lifetime of the context.

The name argument will be interpreted as follows:


	A string (not ending with ‘/’) will create a new name scope, in which
name is appended to the prefix of all operations created in the
context. If name has been used before, it will be made unique by
calling self.unique_name(name).


	A scope previously captured from a with g.name_scope(…) as
scope: statement will be treated as an “absolute” name scope, which
makes it possible to re-enter existing scopes.


	A value of None or the empty string will reset the current name scope
to the top-level (empty) name scope.




For example:

```python
with tf.Graph().as_default() as g:


c = tf.constant(5.0, name=”c”)
assert c.op.name == “c”
c_1 = tf.constant(6.0, name=”c”)
assert c_1.op.name == “c_1”

# Creates a scope called “nested”
with g.name_scope(“nested”) as scope:


nested_c = tf.constant(10.0, name=”c”)
assert nested_c.op.name == “nested/c”

# Creates a nested scope called “inner”.
with g.name_scope(“inner”):


nested_inner_c = tf.constant(20.0, name=”c”)
assert nested_inner_c.op.name == “nested/inner/c”




# Create a nested scope called “inner_1”.
with g.name_scope(“inner”):


nested_inner_1_c = tf.constant(30.0, name=”c”)
assert nested_inner_1_c.op.name == “nested/inner_1/c”

# Treats scope as an absolute name scope, and
# switches to the “nested/” scope.
with g.name_scope(scope):


nested_d = tf.constant(40.0, name=”d”)
assert nested_d.op.name == “nested/d”


	with g.name_scope(“”):

	e = tf.constant(50.0, name=”e”)
assert e.op.name == “e”

















```

The name of the scope itself can be captured by with
g.name_scope(…) as scope:, which stores the name of the scope
in the variable scope. This value can be used to name an
operation that represents the overall result of executing the ops
in a scope. For example:

```python
inputs = tf.constant(…)
with g.name_scope(‘my_layer’) as scope:


weights = tf.Variable(…, name=”weights”)
biases = tf.Variable(…, name=”biases”)
affine = tf.matmul(inputs, weights) + biases
output = tf.nn.relu(affine, name=scope)




```

NOTE: This constructor validates the given name. Valid scope
names match one of the following regular expressions:


[A-Za-z0-9.][A-Za-z0-9_.-/]* (for scopes at the root)
[A-Za-z0-9_.-/]* (for other scopes)





	参数

	name – A name for the scope.



	返回

	A context manager that installs name as a new name scope.



	Raises

	ValueError – If name is not a valid scope name, according to the rules
above.










	
prevent_feeding(tensor)

	Marks the given tensor as unfeedable in this graph.






	
prevent_fetching(op)

	Marks the given op as unfetchable in this graph.






	
seed

	The graph-level random seed of this graph.






	
switch_to_thread_local()

	Make device, colocation and dependencies stacks thread-local.

Device, colocation and dependencies stacks are not thread-local be default.
If multiple threads access them, then the state is shared.  This means that
one thread may affect the behavior of another thread.

After this method is called, the stacks become thread-local.  If multiple
threads access them, then the state is not shared.  Each thread uses its own
value; a thread doesn’t affect other threads by mutating such a stack.

The initial value for every thread’s stack is set to the current value
of the stack when switch_to_thread_local() was first called.






	
unique_name(name, mark_as_used=True)

	Return a unique operation name for name.

Note: You rarely need to call unique_name() directly.  Most of
the time you just need to create with g.name_scope() blocks to
generate structured names.

unique_name is used to generate structured names, separated by
“/”, to help identify operations when debugging a graph.
Operation names are displayed in error messages reported by the
TensorFlow runtime, and in various visualization tools such as
TensorBoard.

If mark_as_used is set to True, which is the default, a new
unique name is created and marked as in use. If it’s set to False,
the unique name is returned without actually being marked as used.
This is useful when the caller simply wants to know what the name
to be created will be.


	参数

	
	name – The name for an operation.


	mark_as_used – Whether to mark this name as being used.






	返回

	A string to be passed to create_op() that will be used
to name the operation being created.










	
version

	Returns a version number that increases as ops are added to the graph.

Note that this is unrelated to the
tf.Graph.graph_def_versions.


	返回

	An integer version that increases as ops are added to the graph.














	
class tensorflow.IndexedSlices(values, indices, dense_shape=None)

	基类：tensorflow.python.framework.tensor_like._TensorLike, tensorflow.python.framework.composite_tensor.CompositeTensor

A sparse representation of a set of tensor slices at given indices.

This class is a simple wrapper for a pair of Tensor objects:


	values: A Tensor of any dtype with shape [D0, D1, …, Dn].


	indices: A 1-D integer Tensor with shape [D0].




An IndexedSlices is typically used to represent a subset of a larger
tensor dense of shape [LARGE0, D1, .. , DN] where LARGE0 >> D0.
The values in indices are the indices in the first dimension of
the slices that have been extracted from the larger tensor.

The dense tensor dense represented by an IndexedSlices slices has

`python
dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]
`

The IndexedSlices class is used principally in the definition of
gradients for operations that have sparse gradients
(e.g. tf.gather).

Contrast this representation with
tf.SparseTensor,
which uses multi-dimensional indices and scalar values.

Creates an IndexedSlices.


	
consumers()

	




	
dense_shape

	A 1-D Tensor containing the shape of the corresponding dense tensor.






	
device

	The name of the device on which values will be produced, or None.






	
dtype

	The DType of elements in this tensor.






	
graph

	The Graph that contains the values, indices, and shape tensors.






	
indices

	A 1-D Tensor containing the indices of the slices.






	
name

	The name of this IndexedSlices.






	
op

	The Operation that produces values as an output.






	
shape

	Gets the tf.TensorShape representing the shape of the dense tensor.


	返回

	A tf.TensorShape object.










	
values

	A Tensor containing the values of the slices.










	
class tensorflow.IndexedSlicesSpec(shape=None, dtype=tf.float32, indices_dtype=tf.int64, dense_shape_dtype=None, indices_shape=None)

	基类：tensorflow.python.framework.type_spec.TypeSpec

Type specification for a tf.IndexedSlices.

Constructs a type specification for a tf.IndexedSlices.


	参数

	
	shape – The dense shape of the IndexedSlices, or None to allow any
dense shape.


	dtype – tf.DType of values in the IndexedSlices.


	indices_dtype – tf.DType of the indices in the IndexedSlices.  One
of tf.int32 or tf.int64.


	dense_shape_dtype – tf.DType of the dense_shape in the IndexedSlices.
One of tf.int32, tf.int64, or None (if the IndexedSlices has
no dense_shape tensor).


	indices_shape – The shape of the indices component, which indicates
how many slices are in the IndexedSlices.









	
value_type

	








	
class tensorflow.Module(name=None)

	基类：tensorflow.python.training.tracking.tracking.AutoTrackable

Base neural network module class.

A module is a named container for tf.Variable`s, other `tf.Module`s and
functions which apply to user input. For example a dense layer in a neural
network might be implemented as a `tf.Module:

>>> class Dense(tf.Module):
...   def __init__(self, in_features, out_features, name=None):
...     super(Dense, self).__init__(name=name)
...     self.w = tf.Variable(
...       tf.random.normal([in_features, out_features]), name='w')
...     self.b = tf.Variable(tf.zeros([out_features]), name='b')
...   def __call__(self, x):
...     y = tf.matmul(x, self.w) + self.b
...     return tf.nn.relu(y)





You can use the Dense layer as you would expect:

>>> d = Dense(in_features=3, out_features=2)
>>> d(tf.ones([1, 3]))
<tf.Tensor: shape=(1, 2), dtype=float32, numpy=..., dtype=float32)>





By subclassing tf.Module instead of object any tf.Variable or
tf.Module instances assigned to object properties can be collected using
the variables, trainable_variables or submodules property:

>>> d.variables
    (<tf.Variable 'b:0' shape=(2,) dtype=float32, numpy=...,
    dtype=float32)>,
    <tf.Variable 'w:0' shape=(3, 2) dtype=float32, numpy=..., dtype=float32)>)





Subclasses of tf.Module can also take advantage of the _flatten method
which can be used to implement tracking of any other types.

All tf.Module classes have an associated tf.name_scope which can be used
to group operations in TensorBoard and create hierarchies for variable names
which can help with debugging. We suggest using the name scope when creating
nested submodules/parameters or for forward methods whose graph you might want
to inspect in TensorBoard. You can enter the name scope explicitly using
with self.name_scope: or you can annotate methods (apart from __init__)
with @tf.Module.with_name_scope.

```python
class MLP(tf.Module):



	def __init__(self, input_size, sizes, name=None):

	super(MLP, self).__init__(name=name)
self.layers = []
with self.name_scope:



	for size in sizes:

	self.layers.append(Dense(input_size=input_size, output_size=size))
input_size = size












@tf.Module.with_name_scope
def __call__(self, x):



	for layer in self.layers:

	x = layer(x)





return x







```


	
name

	Returns the name of this module as passed or determined in the ctor.

NOTE: This is not the same as the self.name_scope.name which includes
parent module names.






	
name_scope

	Returns a tf.name_scope instance for this class.






	
submodules

	Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as
properties of modules which are properties of this module (and so on).

>>> a = tf.Module()
>>> b = tf.Module()
>>> c = tf.Module()
>>> a.b = b
>>> b.c = c
>>> list(a.submodules) == [b, c]
True
>>> list(b.submodules) == [c]
True
>>> list(c.submodules) == []
True






	返回

	A sequence of all submodules.










	
trainable_variables

	Sequence of trainable variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance
and submodules. For performance reasons you may wish to cache the result
of calling this method if you don’t expect the return value to change.


	返回

	A sequence of variables for the current module (sorted by attribute
name) followed by variables from all submodules recursively (breadth
first).










	
variables

	Sequence of variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance
and submodules. For performance reasons you may wish to cache the result
of calling this method if you don’t expect the return value to change.


	返回

	A sequence of variables for the current module (sorted by attribute
name) followed by variables from all submodules recursively (breadth
first).










	
classmethod with_name_scope(method)

	Decorator to automatically enter the module name scope.

>>> class MyModule(tf.Module):
...   @tf.Module.with_name_scope
...   def __call__(self, x):
...     if not hasattr(self, 'w'):
...       self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
...     return tf.matmul(x, self.w)





Using the above module would produce `tf.Variable`s and `tf.Tensor`s whose
names included the module name:

>>> mod = MyModule()
>>> mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
>>> mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>






	参数

	method – The method to wrap.



	返回

	The original method wrapped such that it enters the module’s name scope.














	
class tensorflow.Operation(node_def, g, inputs=None, output_types=None, control_inputs=None, input_types=None, original_op=None, op_def=None)

	基类：object

Represents a graph node that performs computation on tensors.

An Operation is a node in a tf.Graph that takes zero or more Tensor
objects as input, and produces zero or more Tensor objects as output.
Objects of type Operation are created by calling a Python op constructor
(such as tf.matmul) within a tf.function or under a tf.Graph.as_default
context manager.

For example, within a tf.function, c = tf.matmul(a, b) creates an
Operation of type “MatMul” that takes tensors a and b as input, and
produces c as output.

If a tf.compat.v1.Session is used, an Operation of a tf.Graph can be
executed by passing it to tf.Session.run. op.run() is a shortcut for
calling tf.compat.v1.get_default_session().run(op).

Creates an Operation.

NOTE: This constructor validates the name of the Operation (passed
as node_def.name). Valid Operation names match the following
regular expression:


[A-Za-z0-9.][A-Za-z0-9_.-/]*





	参数

	
	node_def – node_def_pb2.NodeDef.  NodeDef for the Operation. Used for
attributes of node_def_pb2.NodeDef, typically name, op, and
device.  The input attribute is irrelevant here as it will be
computed when generating the model.


	g – Graph. The parent graph.


	inputs – list of Tensor objects. The inputs to this Operation.


	output_types – list of DType objects.  List of the types of the Tensors
computed by this operation.  The length of this list indicates the
number of output endpoints of the Operation.


	control_inputs – list of operations or tensors from which to have a control
dependency.


	input_types – List of DType objects representing the types of the tensors
accepted by the Operation.  By default uses [x.dtype.base_dtype for x
in inputs].  Operations that expect reference-typed inputs must specify
these explicitly.


	original_op – Optional. Used to associate the new Operation with an
existing Operation (for example, a replica with the op that was
replicated).


	op_def – Optional. The op_def_pb2.OpDef proto that describes the op type
that this Operation represents.






	Raises

	
	TypeError – if control inputs are not Operations or Tensors,
or if node_def is not a NodeDef,
or if g is not a Graph,
or if inputs are not tensors,
or if inputs and input_types are incompatible.


	ValueError – if the node_def name is not valid.









	
colocation_groups()

	Returns the list of colocation groups of the op.






	
control_inputs

	The Operation objects on which this op has a control dependency.

Before this op is executed, TensorFlow will ensure that the
operations in self.control_inputs have finished executing. This
mechanism can be used to run ops sequentially for performance
reasons, or to ensure that the side effects of an op are observed
in the correct order.


	返回

	A list of Operation objects.










	
device

	The name of the device to which this op has been assigned, if any.


	返回

	The string name of the device to which this op has been
assigned, or an empty string if it has not been assigned to a
device.










	
get_attr(name)

	Returns the value of the attr of this op with the given name.


	参数

	name – The name of the attr to fetch.



	返回

	The value of the attr, as a Python object.



	Raises

	ValueError – If this op does not have an attr with the given name.










	
graph

	The Graph that contains this operation.






	
inputs

	The sequence of Tensor objects representing the data inputs of this op.






	
name

	The full name of this operation.






	
node_def

	Returns the NodeDef representation of this operation.


	返回

	A
[NodeDef](https://www.tensorflow.org/code/tensorflow/core/framework/node_def.proto)
protocol buffer.










	
op_def

	Returns the OpDef proto that represents the type of this op.


	返回

	An
[OpDef](https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto)
protocol buffer.










	
outputs

	The list of Tensor objects representing the outputs of this op.






	
run(feed_dict=None, session=None)

	Runs this operation in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for this operation.

N.B. Before invoking Operation.run(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.


	参数

	
	feed_dict – A dictionary that maps Tensor objects to feed values. See
tf.Session.run for a description of the valid feed values.


	session – (Optional.) The Session to be used to run to this operation. If
none, the default session will be used.













	
traceback

	Returns the call stack from when this operation was constructed.






	
type

	The type of the op (e.g. “MatMul”).






	
values()

	DEPRECATED: Use outputs.










	
class tensorflow.OptionalSpec(value_structure)

	基类：tensorflow.python.framework.type_spec.TypeSpec

Represents an optional potentially containing a structured value.


	
static from_value(value)

	




	
value_type

	The Python type for values that are compatible with this TypeSpec.










	
class tensorflow.RaggedTensor(values, row_splits, cached_row_lengths=None, cached_value_rowids=None, cached_nrows=None, internal=False, uniform_row_length=None)

	基类：tensorflow.python.framework.composite_tensor.CompositeTensor

Represents a ragged tensor.

A RaggedTensor is a tensor with one or more ragged dimensions, which are
dimensions whose slices may have different lengths.  For example, the inner
(column) dimension of rt=[[3, 1, 4, 1], [], [5, 9, 2], [6], []] is ragged,
since the column slices (rt[0, :], …, rt[4, :]) have different lengths.
Dimensions whose slices all have the same length are called uniform
dimensions.  The outermost dimension of a RaggedTensor is always uniform,
since it consists of a single slice (and so there is no possibility for
differing slice lengths).

The total number of dimensions in a RaggedTensor is called its rank,
and the number of ragged dimensions in a RaggedTensor is called its
ragged-rank.  A RaggedTensor’s ragged-rank is fixed at graph creation
time: it can’t depend on the runtime values of `Tensor`s, and can’t vary
dynamically for different session runs.

### Potentially Ragged Tensors

Many ops support both Tensor`s and `RaggedTensor`s.  The term “potentially
ragged tensor” may be used to refer to a tensor that might be either a
`Tensor or a RaggedTensor.  The ragged-rank of a Tensor is zero.

### Documenting RaggedTensor Shapes

When documenting the shape of a RaggedTensor, ragged dimensions can be
indicated by enclosing them in parentheses.  For example, the shape of
a 3-D RaggedTensor that stores the fixed-size word embedding for each
word in a sentence, for each sentence in a batch, could be written as
[num_sentences, (num_words), embedding_size].  The parentheses around
(num_words) indicate that dimension is ragged, and that the length
of each element list in that dimension may vary for each item.

### Component Tensors

Internally, a RaggedTensor consists of a concatenated list of values that
are partitioned into variable-length rows.  In particular, each RaggedTensor
consists of:



	A values tensor, which concatenates the variable-length rows into a
flattened list.  For example, the values tensor for
[[3, 1, 4, 1], [], [5, 9, 2], [6], []] is [3, 1, 4, 1, 5, 9, 2, 6].


	A row_splits vector, which indicates how those flattened values are
divided into rows.  In particular, the values for row rt[i] are stored
in the slice rt.values[rt.row_splits[i]:rt.row_splits[i+1]].







Example:

>>> print(tf.RaggedTensor.from_row_splits(
...       values=[3, 1, 4, 1, 5, 9, 2, 6],
...       row_splits=[0, 4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>





### Alternative Row-Partitioning Schemes

In addition to row_splits, ragged tensors provide support for four other
row-partitioning schemes:



	row_lengths: a vector with shape [nrows], which specifies the length
of each row.


	value_rowids and nrows: value_rowids is a vector with shape
[nvals], corresponding one-to-one with values, which specifies
each value’s row index.  In particular, the row rt[row] consists of the
values rt.values[j] where value_rowids[j]==row.  nrows is an
integer scalar that specifies the number of rows in the
RaggedTensor. (nrows is used to indicate trailing empty rows.)


	row_starts: a vector with shape [nrows], which specifies the start
offset of each row.  Equivalent to row_splits[:-1].


	row_limits: a vector with shape [nrows], which specifies the stop
offset of each row.  Equivalent to row_splits[1:].


	uniform_row_length: A scalar tensor, specifying the length of every
row.  This row-partitioning scheme may only be used if all rows have
the same length.







Example: The following ragged tensors are equivalent, and all represent the
nested list [[3, 1, 4, 1], [], [5, 9, 2], [6], []].

>>> values = [3, 1, 4, 1, 5, 9, 2, 6]
>>> rt1 = RaggedTensor.from_row_splits(values, row_splits=[0, 4, 4, 7, 8, 8])
>>> rt2 = RaggedTensor.from_row_lengths(values, row_lengths=[4, 0, 3, 1, 0])
>>> rt3 = RaggedTensor.from_value_rowids(
...     values, value_rowids=[0, 0, 0, 0, 2, 2, 2, 3], nrows=5)
>>> rt4 = RaggedTensor.from_row_starts(values, row_starts=[0, 4, 4, 7, 8])
>>> rt5 = RaggedTensor.from_row_limits(values, row_limits=[4, 4, 7, 8, 8])





### Multiple Ragged Dimensions

RaggedTensor`s with multiple ragged dimensions can be defined by using
a nested `RaggedTensor for the values tensor.  Each nested RaggedTensor
adds a single ragged dimension.

>>> inner_rt = RaggedTensor.from_row_splits(  # =rt1 from above
...     values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8])
>>> outer_rt = RaggedTensor.from_row_splits(
...     values=inner_rt, row_splits=[0, 3, 3, 5])
>>> print(outer_rt.to_list())
[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]
>>> print(outer_rt.ragged_rank)
2





The factory function RaggedTensor.from_nested_row_splits may be used to
construct a RaggedTensor with multiple ragged dimensions directly, by
providing a list of row_splits tensors:

>>> RaggedTensor.from_nested_row_splits(
...     flat_values=[3, 1, 4, 1, 5, 9, 2, 6],
...     nested_row_splits=([0, 3, 3, 5], [0, 4, 4, 7, 8, 8])).to_list()
[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]





### Uniform Inner Dimensions

RaggedTensor`s with uniform inner dimensions can be defined
by using a multidimensional `Tensor for values.

>>> rt = RaggedTensor.from_row_splits(values=tf.ones([5, 3], tf.int32),
...                                   row_splits=[0, 2, 5])
>>> print(rt.to_list())
[[[1, 1, 1], [1, 1, 1]],
 [[1, 1, 1], [1, 1, 1], [1, 1, 1]]]
>>> print(rt.shape)
(2, None, 3)





### Uniform Outer Dimensions

RaggedTensor`s with uniform outer dimensions can be defined by using
one or more `RaggedTensor with a uniform_row_length row-partitioning
tensor.  For example, a RaggedTensor with shape [2, 2, None] can be
constructed with this method from a RaggedTensor values with shape
[4, None]:

>>> values = tf.ragged.constant([[1, 2, 3], [4], [5, 6], [7, 8, 9, 10]])
>>> print(values.shape)
(4, None)
>>> rt6 = tf.RaggedTensor.from_uniform_row_length(values, 2)
>>> print(rt6)
<tf.RaggedTensor [[[1, 2, 3], [4]], [[5, 6], [7, 8, 9, 10]]]>
>>> print(rt6.shape)
(2, 2, None)





Note that rt6 only contains one ragged dimension (the innermost
dimension). In contrast, if from_row_splits is used to construct a similar
RaggedTensor, then that RaggedTensor will have two ragged dimensions:

>>> rt7 = tf.RaggedTensor.from_row_splits(values, [0, 2, 4])
>>> print(rt7.shape)
(2, None, None)





Uniform and ragged outer dimensions may be interleaved, meaning that a
tensor with any combination of ragged and uniform dimensions may be created.
For example, a RaggedTensor t4 with shape [3, None, 4, 8, None, 2] could
be constructed as follows:

`python
t0 = tf.zeros([1000, 2])                           # Shape:         [1000, 2]
t1 = RaggedTensor.from_row_lengths(t0, [...])      #           [160, None, 2]
t2 = RaggedTensor.from_uniform_row_length(t1, 8)   #         [20, 8, None, 2]
t3 = RaggedTensor.from_uniform_row_length(t2, 4)   #       [5, 4, 8, None, 2]
t4 = RaggedTensor.from_row_lengths(t3, [...])      # [3, None, 4, 8, None, 2]
`

Creates a RaggedTensor with a specified partitioning for values.

This constructor is private – please use one of the following ops to
build `RaggedTensor`s:



	tf.RaggedTensor.from_row_lengths


	tf.RaggedTensor.from_value_rowids


	tf.RaggedTensor.from_row_splits


	tf.RaggedTensor.from_row_starts


	tf.RaggedTensor.from_row_limits


	tf.RaggedTensor.from_nested_row_splits


	tf.RaggedTensor.from_nested_row_lengths


	tf.RaggedTensor.from_nested_value_rowids








	参数

	
	values – A potentially ragged tensor of any dtype and shape [nvals, …].


	row_splits – A 1-D integer tensor with shape [nrows+1].


	cached_row_lengths – A 1-D integer tensor with shape [nrows]


	cached_value_rowids – A 1-D integer tensor with shape [nvals].


	cached_nrows – A 1-D integer scalar tensor.


	internal – True if the constructor is being called by one of the factory
methods.  If false, an exception will be raised.


	uniform_row_length – A scalar tensor.






	Raises

	
	TypeError – If a row partitioning tensor has an inappropriate dtype.


	TypeError – If exactly one row partitioning argument was not specified.


	ValueError – If a row partitioning tensor has an inappropriate shape.


	ValueError – If multiple partitioning arguments are specified.


	ValueError – If nrows is specified but value_rowids is not None.









	
bounding_shape(axis=None, name=None, out_type=None)

	Returns the tight bounding box shape for this RaggedTensor.


	参数

	
	axis – An integer scalar or vector indicating which axes to return the
bounding box for.  If not specified, then the full bounding box is
returned.


	name – A name prefix for the returned tensor (optional).


	out_type – dtype for the returned tensor.  Defaults to
self.row_splits.dtype.






	返回

	An integer Tensor (dtype=self.row_splits.dtype).  If axis is not
specified, then output is a vector with
output.shape=[self.shape.ndims].  If axis is a scalar, then the
output is a scalar.  If axis is a vector, then output is a vector,
where output[i] is the bounding size for dimension axis[i].





#### Example:

>>> rt = tf.ragged.constant([[1, 2, 3, 4], [5], [], [6, 7, 8, 9], [10]])
>>> rt.bounding_shape().numpy()
array([5, 4])










	
consumers()

	




	
dtype

	The DType of values in this tensor.






	
flat_values

	The innermost values tensor for this ragged tensor.

Concretely, if rt.values is a Tensor, then rt.flat_values is
rt.values; otherwise, rt.flat_values is rt.values.flat_values.

Conceptually, flat_values is the tensor formed by flattening the
outermost dimension and all of the ragged dimensions into a single
dimension.

rt.flat_values.shape = [nvals] + rt.shape[rt.ragged_rank + 1:]
(where nvals is the number of items in the flattened dimensions).


	返回

	A Tensor.





#### Example:

>>> rt = tf.ragged.constant([[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]])
>>> print(rt.flat_values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)










	
classmethod from_nested_row_lengths(flat_values, nested_row_lengths, name=None, validate=True)

	Creates a RaggedTensor from a nested list of row_lengths tensors.

Equivalent to:

```python
result = flat_values
for row_lengths in reversed(nested_row_lengths):


result = from_row_lengths(result, row_lengths)




```


	参数

	
	flat_values – A potentially ragged tensor.


	nested_row_lengths – A list of 1-D integer tensors.  The i`th tensor is
used as the `row_lengths for the `i`th ragged dimension.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor (or flat_values if nested_row_lengths is empty).










	
classmethod from_nested_row_splits(flat_values, nested_row_splits, name=None, validate=True)

	Creates a RaggedTensor from a nested list of row_splits tensors.

Equivalent to:

```python
result = flat_values
for row_splits in reversed(nested_row_splits):


result = from_row_splits(result, row_splits)




```


	参数

	
	flat_values – A potentially ragged tensor.


	nested_row_splits – A list of 1-D integer tensors.  The i`th tensor is
used as the `row_splits for the `i`th ragged dimension.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor (or flat_values if nested_row_splits is empty).










	
classmethod from_nested_value_rowids(flat_values, nested_value_rowids, nested_nrows=None, name=None, validate=True)

	Creates a RaggedTensor from a nested list of value_rowids tensors.

Equivalent to:

```python
result = flat_values
for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):


result = from_value_rowids(result, rowids, nrows)




```


	参数

	
	flat_values – A potentially ragged tensor.


	nested_value_rowids – A list of 1-D integer tensors.  The i`th tensor is
used as the `value_rowids for the `i`th ragged dimension.


	nested_nrows – A list of integer scalars.  The i`th scalar is used as the
`nrows for the `i`th ragged dimension.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor (or flat_values if nested_value_rowids is empty).



	Raises

	ValueError – If len(nested_values_rowids) != len(nested_nrows).










	
classmethod from_row_lengths(values, row_lengths, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by row_lengths.

The returned RaggedTensor corresponds with the python list defined by:

```python
result = [[values.pop(0) for i in range(length)]


for length in row_lengths]




```


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	row_lengths – A 1-D integer tensor with shape [nrows].  Must be
nonnegative.  sum(row_lengths) must be nvals.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.





#### Example:

>>> print(tf.RaggedTensor.from_row_lengths(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_lengths=[4, 0, 3, 1, 0]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
classmethod from_row_limits(values, row_limits, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by row_limits.

Equivalent to: from_row_splits(values, concat([0, row_limits])).


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	row_limits – A 1-D integer tensor with shape [nrows].  Must be sorted in
ascending order.  If nrows>0, then row_limits[-1] must be nvals.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.





#### Example:

>>> print(tf.RaggedTensor.from_row_limits(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_limits=[4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
classmethod from_row_splits(values, row_splits, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by row_splits.

The returned RaggedTensor corresponds with the python list defined by:

```python
result = [values[row_splits[i]:row_splits[i + 1]]


for i in range(len(row_splits) - 1)]




```


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	row_splits – A 1-D integer tensor with shape [nrows+1].  Must not be
empty, and must be sorted in ascending order.  row_splits[0] must be
zero and row_splits[-1] must be nvals.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.



	Raises

	ValueError – If row_splits is an empty list.





#### Example:

>>> print(tf.RaggedTensor.from_row_splits(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_splits=[0, 4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
classmethod from_row_starts(values, row_starts, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by row_starts.

Equivalent to: from_row_splits(values, concat([row_starts, nvals])).


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	row_starts – A 1-D integer tensor with shape [nrows].  Must be
nonnegative and sorted in ascending order.  If nrows>0, then
row_starts[0] must be zero.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.





#### Example:

>>> print(tf.RaggedTensor.from_row_starts(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_starts=[0, 4, 4, 7, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
classmethod from_sparse(st_input, name=None, row_splits_dtype=tf.int64)

	Converts a 2D tf.SparseTensor to a RaggedTensor.

Each row of the output RaggedTensor will contain the explicit values
from the same row in st_input.  st_input must be ragged-right.  If not
it is not ragged-right, then an error will be generated.

Example:

>>> st = tf.SparseTensor(indices=[[0, 0], [0, 1], [0, 2], [1, 0], [3, 0]],
...                      values=[1, 2, 3, 4, 5],
...                      dense_shape=[4, 3])
>>> tf.RaggedTensor.from_sparse(st).to_list()
[[1, 2, 3], [4], [], [5]]





Currently, only two-dimensional SparseTensors are supported.


	参数

	
	st_input – The sparse tensor to convert.  Must have rank 2.


	name – A name prefix for the returned tensors (optional).


	row_splits_dtype – dtype for the returned RaggedTensor’s row_splits
tensor.  One of tf.int32 or tf.int64.






	返回

	A RaggedTensor with the same values as st_input.
output.ragged_rank = rank(st_input) - 1.
output.shape = [st_input.dense_shape[0], None].



	Raises

	ValueError – If the number of dimensions in st_input is not known
statically, or is not two.










	
classmethod from_tensor(tensor, lengths=None, padding=None, ragged_rank=1, name=None, row_splits_dtype=tf.int64)

	Converts a tf.Tensor into a RaggedTensor.

The set of absent/default values may be specified using a vector of lengths
or a padding value (but not both).  If lengths is specified, then the
output tensor will satisfy output[row] = tensor[row][:lengths[row]]. If
‘lengths’ is a list of lists or tuple of lists, those lists will be used
as nested row lengths. If padding is specified, then any row suffix
consisting entirely of padding will be excluded from the returned
RaggedTensor.  If neither lengths nor padding is specified, then the
returned RaggedTensor will have no absent/default values.

Examples:

>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
>>> tf.RaggedTensor.from_tensor(dt)
<tf.RaggedTensor [[5, 7, 0], [0, 3, 0], [6, 0, 0]]>
>>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
<tf.RaggedTensor [[5], [], [6, 0, 0]]>





>>> tf.RaggedTensor.from_tensor(dt, padding=0)
<tf.RaggedTensor [[5, 7], [0, 3], [6]]>





>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]],
...                   [[0, 0], [3, 0], [0, 0]],
...                   [[6, 0], [0, 0], [0, 0]]])
>>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))
<tf.RaggedTensor [[[5], [7]], [], [[6, 0], [], [0]]]>






	参数

	
	tensor – The Tensor to convert.  Must have rank ragged_rank + 1 or
higher.


	lengths – An optional set of row lengths, specified using a 1-D integer
Tensor whose length is equal to tensor.shape[0] (the number of rows
in tensor).  If specified, then output[row] will contain
tensor[row][:lengths[row]].  Negative lengths are treated as zero. You
may optionally pass a list or tuple of lengths to this argument, which
will be used as nested row lengths to construct a ragged tensor with
multiple ragged dimensions.


	padding – An optional padding value.  If specified, then any row suffix
consisting entirely of padding will be excluded from the returned
RaggedTensor.  padding is a Tensor with the same dtype as tensor
and with shape=tensor.shape[ragged_rank + 1:].


	ragged_rank – Integer specifying the ragged rank for the returned
RaggedTensor.  Must be greater than zero.


	name – A name prefix for the returned tensors (optional).


	row_splits_dtype – dtype for the returned RaggedTensor’s row_splits
tensor.  One of tf.int32 or tf.int64.






	返回

	A RaggedTensor with the specified ragged_rank.  The shape of the
returned ragged tensor is compatible with the shape of tensor.



	Raises

	ValueError – If both lengths and padding are specified.










	
classmethod from_uniform_row_length(values, uniform_row_length, nrows=None, validate=True, name=None)

	Creates a RaggedTensor with rows partitioned by uniform_row_length.

This method can be used to create RaggedTensor`s with multiple uniform
outer dimensions.  For example, a `RaggedTensor with shape [2, 2, None]
can be constructed with this method from a RaggedTensor values with shape
[4, None]:

>>> values = tf.ragged.constant([[1, 2, 3], [4], [5, 6], [7, 8, 9, 10]])
>>> print(values.shape)
(4, None)
>>> rt1 = tf.RaggedTensor.from_uniform_row_length(values, 2)
>>> print(rt1)
<tf.RaggedTensor [[[1, 2, 3], [4]], [[5, 6], [7, 8, 9, 10]]]>
>>> print(rt1.shape)
(2, 2, None)





Note that rt1 only contains one ragged dimension (the innermost
dimension). In contrast, if from_row_splits is used to construct a similar
RaggedTensor, then that RaggedTensor will have two ragged dimensions:

>>> rt2 = tf.RaggedTensor.from_row_splits(values, [0, 2, 4])
>>> print(rt2.shape)
(2, None, None)






	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	uniform_row_length – A scalar integer tensor.  Must be nonnegative.
The size of the outer axis of values must be evenly divisible by
uniform_row_length.


	nrows – The number of rows in the constructed RaggedTensor.  If not
specified, then it defaults to nvals/uniform_row_length (or 0 if
uniform_row_length==0).  nrows only needs to be specified if
uniform_row_length might be zero.  uniform_row_length*nrows must
be nvals.


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.


	name – A name prefix for the RaggedTensor (optional).






	返回

	```python
result = [[values.pop(0) for i in range(uniform_row_length)]


for _ in range(nrows)]




```

result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.





	返回类型

	A RaggedTensor that corresponds with the python list defined by










	
classmethod from_value_rowids(values, value_rowids, nrows=None, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by value_rowids.

The returned RaggedTensor corresponds with the python list defined by:

```python
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]


for row in range(nrows)]




```


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	value_rowids – A 1-D integer tensor with shape [nvals], which corresponds
one-to-one with values, and specifies each value’s row index.  Must be
nonnegative, and must be sorted in ascending order.


	nrows – An integer scalar specifying the number of rows.  This should be
specified if the RaggedTensor may containing empty training rows. Must
be greater than value_rowids[-1] (or zero if value_rowids is empty).
Defaults to value_rowids[-1] (or zero if value_rowids is empty).


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.



	Raises

	ValueError – If nrows is incompatible with value_rowids.





#### Example:

>>> print(tf.RaggedTensor.from_value_rowids(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     value_rowids=[0, 0, 0, 0, 2, 2, 2, 3],
...     nrows=5))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
merge_dims(outer_axis, inner_axis)

	Merges outer_axis…inner_axis into a single dimension.

Returns a copy of this RaggedTensor with the specified range of dimensions
flattened into a single dimension, with elements in row-major order.

#### Examples:

>>> rt = tf.ragged.constant([[[1, 2], [3]], [[4, 5, 6]]])
>>> print(rt.merge_dims(0, 1))
<tf.RaggedTensor [[1, 2], [3], [4, 5, 6]]>
>>> print(rt.merge_dims(1, 2))
<tf.RaggedTensor [[1, 2, 3], [4, 5, 6]]>
>>> print(rt.merge_dims(0, 2))
tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32)





To mimic the behavior of np.flatten (which flattens all dimensions), use
rt.merge_dims(0, -1).  To mimic the behavior of `tf.layers.Flatten (which
flattens all dimensions except the outermost batch dimension), use
rt.merge_dims(1, -1).


	参数

	
	outer_axis – int: The first dimension in the range of dimensions to
merge. May be negative if self.shape.rank is statically known.


	inner_axis – int: The last dimension in the range of dimensions to
merge. May be negative if self.shape.rank is statically known.






	返回

	A copy of this tensor, with the specified dimensions merged into a
single dimension.  The shape of the returned tensor will be
self.shape[:outer_axis] + [N] + self.shape[inner_axis + 1:], where N
is the total number of slices in the merged dimensions.










	
nested_row_lengths(name=None)

	Returns a tuple containing the row_lengths for all ragged dimensions.

rt.nested_row_lengths() is a tuple containing the row_lengths tensors
for all ragged dimensions in rt, ordered from outermost to innermost.


	参数

	name – A name prefix for the returned tensors (optional).



	返回

	A tuple of 1-D integer Tensors.  The length of the tuple is equal to
self.ragged_rank.










	
nested_row_splits

	A tuple containing the row_splits for all ragged dimensions.

rt.nested_row_splits is a tuple containing the row_splits tensors for
all ragged dimensions in rt, ordered from outermost to innermost.  In
particular, rt.nested_row_splits = (rt.row_splits,) + value_splits where:



	value_splits = () if rt.values is a Tensor.


	value_splits = rt.values.nested_row_splits otherwise.








	返回

	A tuple of 1-D integer `Tensor`s.





#### Example:

>>> rt = tf.ragged.constant(
...     [[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]])
>>> for i, splits in enumerate(rt.nested_row_splits):
...   print('Splits for dimension %d: %s' % (i+1, splits.numpy()))
Splits for dimension 1: [0 3]
Splits for dimension 2: [0 3 3 5]
Splits for dimension 3: [0 4 4 7 8 8]










	
nested_value_rowids(name=None)

	Returns a tuple containing the value_rowids for all ragged dimensions.

rt.nested_value_rowids is a tuple containing the value_rowids tensors
for
all ragged dimensions in rt, ordered from outermost to innermost.  In
particular, rt.nested_value_rowids = (rt.value_rowids(),) + value_ids
where:



	value_ids = () if rt.values is a Tensor.


	value_ids = rt.values.nested_value_rowids otherwise.








	参数

	name – A name prefix for the returned tensors (optional).



	返回

	A tuple of 1-D integer `Tensor`s.





#### Example:

>>> rt = tf.ragged.constant(
...     [[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]])
>>> for i, ids in enumerate(rt.nested_value_rowids()):
...   print('row ids for dimension %d: %s' % (i+1, ids.numpy()))
row ids for dimension 1: [0 0 0]
row ids for dimension 2: [0 0 0 2 2]
row ids for dimension 3: [0 0 0 0 2 2 2 3]










	
nrows(out_type=None, name=None)

	Returns the number of rows in this ragged tensor.

I.e., the size of the outermost dimension of the tensor.


	参数

	
	out_type – dtype for the returned tensor.  Defaults to
self.row_splits.dtype.


	name – A name prefix for the returned tensor (optional).






	返回

	A scalar Tensor with dtype out_type.





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.nrows())  # rt has 5 rows.
tf.Tensor(5, shape=(), dtype=int64)










	
numpy()

	Returns a numpy array with the values for this RaggedTensor.

Requires that this RaggedTensor was constructed in eager execution mode.

Ragged dimensions are encoded using numpy arrays with dtype=object and
rank=1, where each element is a single row.

#### Examples

In the following example, the value returned by RaggedTensor.numpy()
contains three numpy array objects: one for each row (with rank=1 and
dtype=int64), and one to combine them (with rank=1 and dtype=object):

>>> tf.ragged.constant([[1, 2, 3], [4, 5]], dtype=tf.int64).numpy()
array([array([1, 2, 3]), array([4, 5])], dtype=object)





Uniform dimensions are encoded using multidimensional numpy array`s.  In
the following example, the value returned by `RaggedTensor.numpy() contains
a single numpy array object, with rank=2 and dtype=int64:

>>> tf.ragged.constant([[1, 2, 3], [4, 5, 6]], dtype=tf.int64).numpy()
array([[1, 2, 3], [4, 5, 6]])






	返回

	A numpy array.










	
ragged_rank

	The number of ragged dimensions in this ragged tensor.


	返回

	A Python int indicating the number of ragged dimensions in this ragged
tensor.  The outermost dimension is not considered ragged.










	
row_lengths(axis=1, name=None)

	Returns the lengths of the rows in this ragged tensor.

rt.row_lengths()[i] indicates the number of values in the
i`th row of `rt.


	参数

	
	axis – An integer constant indicating the axis whose row lengths should be
returned.


	name – A name prefix for the returned tensor (optional).






	返回

	axis]`.



	返回类型

	A potentially ragged integer Tensor with shape `self.shape[



	Raises

	ValueError – If axis is out of bounds.





#### Example:

>>> rt = tf.ragged.constant(
...     [[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []])
>>> print(rt.row_lengths())  # lengths of rows in rt
tf.Tensor([2 0 2 1 0], shape=(5,), dtype=int64)
>>> print(rt.row_lengths(axis=2))  # lengths of axis=2 rows.
<tf.RaggedTensor [[3, 1], [], [2, 1], [1], []]>










	
row_limits(name=None)

	Returns the limit indices for rows in this ragged tensor.

These indices specify where the values for each row end in
self.values.  rt.row_limits(self) is equal to rt.row_splits[:-1].


	参数

	name – A name prefix for the returned tensor (optional).



	返回

	A 1-D integer Tensor with shape [nrows].
The returned tensor is nonnegative, and is sorted in ascending order.





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)
>>> print(rt.row_limits())  # indices of row limits in rt.values
tf.Tensor([4 4 7 8 8], shape=(5,), dtype=int64)










	
row_splits

	The row-split indices for this ragged tensor’s values.

rt.row_splits specifies where the values for each row begin and end in
rt.values.  In particular, the values for row rt[i] are stored in
the slice rt.values[rt.row_splits[i]:rt.row_splits[i+1]].


	返回

	A 1-D integer Tensor with shape [self.nrows+1].
The returned tensor is non-empty, and is sorted in ascending order.
self.row_splits[0] is zero, and self.row_splits[-1] is equal to
self.values.shape[0].





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.row_splits)  # indices of row splits in rt.values
tf.Tensor([0 4 4 7 8 8], shape=(6,), dtype=int64)










	
row_starts(name=None)

	Returns the start indices for rows in this ragged tensor.

These indices specify where the values for each row begin in
self.values.  rt.row_starts() is equal to rt.row_splits[:-1].


	参数

	name – A name prefix for the returned tensor (optional).



	返回

	A 1-D integer Tensor with shape [nrows].
The returned tensor is nonnegative, and is sorted in ascending order.





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)
>>> print(rt.row_starts())  # indices of row starts in rt.values
tf.Tensor([0 4 4 7 8], shape=(5,), dtype=int64)










	
shape

	The statically known shape of this ragged tensor.


	返回

	A TensorShape containing the statically known shape of this ragged
tensor.  Ragged dimensions have a size of None.





Examples:

>>> tf.ragged.constant([[0], [1, 2]]).shape
TensorShape([2, None])





>>> tf.ragged.constant([[[0, 1]], [[1, 2], [3, 4]]], ragged_rank=1).shape
TensorShape([2, None, 2])










	
to_list()

	Returns a nested Python list with the values for this RaggedTensor.

Requires that rt was constructed in eager execution mode.


	返回

	A nested Python list.










	
to_sparse(name=None)

	Converts this RaggedTensor into a tf.SparseTensor.

Example:

>>> rt = tf.ragged.constant([[1, 2, 3], [4], [], [5, 6]])
>>> print(rt.to_sparse())
SparseTensor(indices=tf.Tensor(
                 [[0 0] [0 1] [0 2] [1 0] [3 0] [3 1]],
                 shape=(6, 2), dtype=int64),
             values=tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32),
             dense_shape=tf.Tensor([4 3], shape=(2,), dtype=int64))






	参数

	name – A name prefix for the returned tensors (optional).



	返回

	A SparseTensor with the same values as self.










	
to_tensor(default_value=None, name=None, shape=None)

	Converts this RaggedTensor into a tf.Tensor.

If shape is specified, then the result is padded and/or truncated to
the specified shape.

Examples:

>>> rt = tf.ragged.constant([[9, 8, 7], [], [6, 5], [4]])
>>> print(rt.to_tensor())
tf.Tensor(
    [[9 8 7] [0 0 0] [6 5 0] [4 0 0]], shape=(4, 3), dtype=int32)
>>> print(rt.to_tensor(shape=[5, 2]))
tf.Tensor(
    [[9 8] [0 0] [6 5] [4 0] [0 0]], shape=(5, 2), dtype=int32)






	参数

	
	default_value – Value to set for indices not specified in self. Defaults
to zero.  default_value must be broadcastable to
self.shape[self.ragged_rank + 1:].


	name – A name prefix for the returned tensors (optional).


	shape – The shape of the resulting dense tensor.  In particular,
result.shape[i] is shape[i] (if shape[i] is not None), or
self.bounding_shape(i) (otherwise).`shape.rank` must be None or
equal to self.rank.






	返回

	A Tensor with shape ragged.bounding_shape(self) and the
values specified by the non-empty values in self.  Empty values are
assigned default_value.










	
uniform_row_length

	The length of each row in this ragged tensor, or None if rows are ragged.

>>> rt1 = tf.ragged.constant([[1, 2, 3], [4], [5, 6], [7, 8, 9, 10]])
>>> print(rt1.uniform_row_length)  # rows are ragged.
None





>>> rt2 = tf.RaggedTensor.from_uniform_row_length(
...     values=rt1, uniform_row_length=2)
>>> print(rt2)
<tf.RaggedTensor [[[1, 2, 3], [4]], [[5, 6], [7, 8, 9, 10]]]>
>>> print(rt2.uniform_row_length)  # rows are not ragged (all have size 2).
tf.Tensor(2, shape=(), dtype=int64)





A RaggedTensor’s rows are only considered to be uniform (i.e. non-ragged)
if it can be determined statically (at graph construction time) that the
rows all have the same length.


	返回

	A scalar integer Tensor, specifying the length of every row in this
ragged tensor (for ragged tensors whose rows are uniform); or None
(for ragged tensors whose rows are ragged).










	
value_rowids(name=None)

	Returns the row indices for the values in this ragged tensor.

rt.value_rowids() corresponds one-to-one with the outermost dimension of
rt.values, and specifies the row containing each value.  In particular,
the row rt[row] consists of the values rt.values[j] where
rt.value_rowids()[j] == row.


	参数

	name – A name prefix for the returned tensor (optional).



	返回

	1]`.
The returned tensor is nonnegative, and is sorted in ascending order.



	返回类型

	A 1-D integer Tensor with shape `self.values.shape[





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)
>>> print(rt.value_rowids())  # corresponds 1:1 with rt.values
tf.Tensor([0 0 0 0 2 2 2 3], shape=(8,), dtype=int64)










	
values

	The concatenated rows for this ragged tensor.

rt.values is a potentially ragged tensor formed by flattening the two
outermost dimensions of rt into a single dimension.

rt.values.shape = [nvals] + rt.shape[2:] (where nvals is the
number of items in the outer two dimensions of rt).

rt.ragged_rank = self.ragged_rank - 1


	返回

	A potentially ragged tensor.





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)










	
with_flat_values(new_values)

	Returns a copy of self with flat_values replaced by new_value.

Preserves cached row-partitioning tensors such as self.cached_nrows and
self.cached_value_rowids if they have values.


	参数

	
	new_values – Potentially ragged tensor that should replace


	Must have rank > 0, and must have the same (self.flat_values.) – 


	of rows as self.flat_values. (number) – 






	返回

	A RaggedTensor.
result.rank = self.ragged_rank + new_values.rank.
result.ragged_rank = self.ragged_rank + new_values.ragged_rank.










	
with_row_splits_dtype(dtype)

	Returns a copy of this RaggedTensor with the given row_splits dtype.

For RaggedTensors with multiple ragged dimensions, the row_splits for all
nested RaggedTensor objects are cast to the given dtype.


	参数

	dtype – The dtype for row_splits.  One of tf.int32 or tf.int64.



	返回

	A copy of this RaggedTensor, with the row_splits cast to the given
type.










	
with_values(new_values)

	Returns a copy of self with values replaced by new_value.

Preserves cached row-partitioning tensors such as self.cached_nrows and
self.cached_value_rowids if they have values.


	参数

	new_values – Potentially ragged tensor to use as the values for the
returned RaggedTensor.  Must have rank > 0, and must have the same
number of rows as self.values.



	返回

	A RaggedTensor.  result.rank = 1 + new_values.rank.
result.ragged_rank = 1 + new_values.ragged_rank














	
class tensorflow.RaggedTensorSpec(shape=None, dtype=tf.float32, ragged_rank=None, row_splits_dtype=tf.int64)

	基类：tensorflow.python.framework.type_spec.BatchableTypeSpec

Type specification for a tf.RaggedTensor.

Constructs a type specification for a tf.RaggedTensor.


	参数

	
	shape – The shape of the RaggedTensor, or None to allow any shape.  If
a shape is specified, then all ragged dimensions must have size None.


	dtype – tf.DType of values in the RaggedTensor.


	ragged_rank – Python integer, the ragged rank of the RaggedTensor
to be described.  Defaults to shape.ndims - 1.


	row_splits_dtype – dtype for the RaggedTensor’s row_splits tensor.
One of tf.int32 or tf.int64.









	
classmethod from_value(value)

	




	
value_type

	The Python type for values that are compatible with this TypeSpec.










	
class tensorflow.RegisterGradient(op_type)

	基类：object

A decorator for registering the gradient function for an op type.

This decorator is only used when defining a new op type. For an op
with m inputs and n outputs, the gradient function is a function
that takes the original Operation and n Tensor objects
(representing the gradients with respect to each output of the op),
and returns m Tensor objects (representing the partial gradients
with respect to each input of the op).

For example, assuming that operations of type “Sub” take two
inputs x and y, and return a single output x - y, the
following gradient function would be registered:

```python
@tf.RegisterGradient(“Sub”)
def _sub_grad(unused_op, grad):


return grad, tf.negative(grad)




```

The decorator argument op_type is the string type of an
operation. This corresponds to the OpDef.name field for the proto
that defines the operation.

Creates a new decorator with op_type as the Operation type.


	参数

	op_type – The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.



	Raises

	TypeError – If op_type is not string.










	
class tensorflow.SparseTensor(indices, values, dense_shape)

	基类：tensorflow.python.framework.tensor_like._TensorLike, tensorflow.python.framework.composite_tensor.CompositeTensor

Represents a sparse tensor.

TensorFlow represents a sparse tensor as three separate dense tensors:
indices, values, and dense_shape.  In Python, the three tensors are
collected into a SparseTensor class for ease of use.  If you have separate
indices, values, and dense_shape tensors, wrap them in a SparseTensor
object before passing to the ops below.

Concretely, the sparse tensor SparseTensor(indices, values, dense_shape)
comprises the following components, where N and ndims are the number
of values and number of dimensions in the SparseTensor, respectively:


	indices: A 2-D int64 tensor of shape [N, ndims], which specifies the
indices of the elements in the sparse tensor that contain nonzero values
(elements are zero-indexed). For example, indices=[[1,3], [2,4]] specifies
that the elements with indexes of [1,3] and [2,4] have nonzero values.


	values: A 1-D tensor of any type and shape [N], which supplies the
values for each element in indices. For example, given indices=[[1,3],
[2,4]], the parameter values=[18, 3.6] specifies that element [1,3] of
the sparse tensor has a value of 18, and element [2,4] of the tensor has a
value of 3.6.


	dense_shape: A 1-D int64 tensor of shape [ndims], which specifies the
dense_shape of the sparse tensor. Takes a list indicating the number of
elements in each dimension. For example, dense_shape=[3,6] specifies a
two-dimensional 3x6 tensor, dense_shape=[2,3,4] specifies a
three-dimensional 2x3x4 tensor, and dense_shape=[9] specifies a
one-dimensional tensor with 9 elements.




The corresponding dense tensor satisfies:

`python
dense.shape = dense_shape
dense[tuple(indices[i])] = values[i]
`

By convention, indices should be sorted in row-major order (or equivalently
lexicographic order on the tuples indices[i]). This is not enforced when
SparseTensor objects are constructed, but most ops assume correct ordering.
If the ordering of sparse tensor st is wrong, a fixed version can be
obtained by calling tf.sparse.reorder(st).

Example: The sparse tensor

`python
SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4])
`

represents the dense tensor

```python
[[1, 0, 0, 0]


[0, 0, 2, 0]
[0, 0, 0, 0]]




```

Creates a SparseTensor.


	参数

	
	indices – A 2-D int64 tensor of shape [N, ndims].


	values – A 1-D tensor of any type and shape [N].


	dense_shape – A 1-D int64 tensor of shape [ndims].






	Raises

	ValueError – When building an eager SparseTensor if dense_shape is
unknown or contains unknown elements (None or -1).






	
consumers()

	




	
dense_shape

	A 1-D Tensor of int64 representing the shape of the dense tensor.






	
dtype

	The DType of elements in this tensor.






	
eval(feed_dict=None, session=None)

	Evaluates this sparse tensor in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

N.B. Before invoking SparseTensor.eval(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.


	参数

	
	feed_dict – A dictionary that maps Tensor objects to feed values. See
tf.Session.run for a description of the valid feed values.


	session – (Optional.) The Session to be used to evaluate this sparse
tensor. If none, the default session will be used.






	返回

	A SparseTensorValue object.










	
classmethod from_value(sparse_tensor_value)

	




	
get_shape()

	Get the TensorShape representing the shape of the dense tensor.


	返回

	A TensorShape object.










	
graph

	The Graph that contains the index, value, and dense_shape tensors.






	
indices

	The indices of non-zero values in the represented dense tensor.


	返回

	
	A 2-D Tensor of int64 with dense_shape [N, ndims], where N is the

	number of non-zero values in the tensor, and ndims is the rank.
















	
op

	The Operation that produces values as an output.






	
shape

	Get the TensorShape representing the shape of the dense tensor.


	返回

	A TensorShape object.










	
values

	The non-zero values in the represented dense tensor.


	返回

	A 1-D Tensor of any data type.














	
class tensorflow.SparseTensorSpec(shape=None, dtype=tf.float32)

	基类：tensorflow.python.framework.type_spec.BatchableTypeSpec

Type specification for a tf.SparseTensor.

Constructs a type specification for a tf.SparseTensor.


	参数

	
	shape – The dense shape of the SparseTensor, or None to allow
any dense shape.


	dtype – tf.DType of values in the SparseTensor.









	
dtype

	The tf.dtypes.DType specified by this type for the SparseTensor.






	
classmethod from_value(value)

	




	
shape

	The tf.TensorShape specified by this type for the SparseTensor.






	
value_type

	








	
class tensorflow.Tensor(op, value_index, dtype)

	基类：tensorflow.python.framework.tensor_like._TensorLike

A tensor represents a rectangular array of data.

When writing a TensorFlow program, the main object you manipulate and pass
around is the tf.Tensor. A tf.Tensor object represents a rectangular array
of arbitrary dimension, filled with data of a specific data type.

A tf.Tensor has the following properties:


	a data type (float32, int32, or string, for example)


	a shape




Each element in the Tensor has the same data type, and the data type is always
known.

In eager execution, which is the default mode in TensorFlow, results are
calculated immediately.

>>> # Compute some values using a Tensor
>>> c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
>>> d = tf.constant([[1.0, 1.0], [0.0, 1.0]])
>>> e = tf.matmul(c, d)
>>> print(e)
tf.Tensor(
[[1. 3.]
 [3. 7.]], shape=(2, 2), dtype=float32)





Note that during eager execution, you may discover your Tensors are actually
of type EagerTensor.  This is an internal detail, but it does give you
access to a useful function, numpy:

>>> type(e)
<class '...ops.EagerTensor'>
>>> print(e.numpy())
  [[1. 3.]
   [3. 7.]]





TensorFlow can define computations without immediately executing them, most
commonly inside `tf.function`s, as well as in (legacy) Graph mode. In those
cases, the shape (that is, the rank of the Tensor and the size of
each dimension) might be only partially known.

Most operations produce tensors of fully-known shapes if the shapes of their
inputs are also fully known, but in some cases it’s only possible to find the
shape of a tensor at execution time.

There are specialized tensors; for these, see tf.Variable, tf.constant,
tf.placeholder, tf.SparseTensor, and tf.RaggedTensor.

For more on Tensors, see the [guide](https://tensorflow.org/guide/tensor`).

Creates a new Tensor.


	参数

	
	op – An Operation. Operation that computes this tensor.


	value_index – An int. Index of the operation’s endpoint that produces
this tensor.


	dtype – A DType. Type of elements stored in this tensor.






	Raises

	TypeError – If the op is not an Operation.






	
OVERLOADABLE_OPERATORS = {'__abs__', '__add__', '__and__', '__div__', '__eq__', '__floordiv__', '__ge__', '__getitem__', '__gt__', '__invert__', '__le__', '__lt__', '__matmul__', '__mod__', '__mul__', '__ne__', '__neg__', '__or__', '__pow__', '__radd__', '__rand__', '__rdiv__', '__rfloordiv__', '__rmatmul__', '__rmod__', '__rmul__', '__ror__', '__rpow__', '__rsub__', '__rtruediv__', '__rxor__', '__sub__', '__truediv__', '__xor__'}

	




	
consumers()

	Returns a list of `Operation`s that consume this tensor.


	返回

	A list of `Operation`s.










	
device

	The name of the device on which this tensor will be produced, or None.






	
dtype

	The DType of elements in this tensor.






	
eval(feed_dict=None, session=None)

	Evaluates this tensor in a Session.

Note: If you are not using compat.v1 libraries, you should not need this,
(or feed_dict or Session).  In eager execution (or within tf.function)
you do not need to call eval.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

N.B. Before invoking Tensor.eval(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.


	参数

	
	feed_dict – A dictionary that maps Tensor objects to feed values. See
tf.Session.run for a description of the valid feed values.


	session – (Optional.) The Session to be used to evaluate this tensor. If
none, the default session will be used.






	返回

	A numpy array corresponding to the value of this tensor.










	
experimental_ref()

	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use ref() instead.






	
get_shape()

	Alias of tf.Tensor.shape.






	
graph

	The Graph that contains this tensor.






	
name

	The string name of this tensor.






	
op

	The Operation that produces this tensor as an output.






	
ref()

	Returns a hashable reference object to this Tensor.

The primary use case for this API is to put tensors in a set/dictionary.
We can’t put tensors in a set/dictionary as tensor.__hash__() is no longer
available starting Tensorflow 2.0.

The following will raise an exception starting 2.0

>>> x = tf.constant(5)
>>> y = tf.constant(10)
>>> z = tf.constant(10)
>>> tensor_set = {x, y, z}
Traceback (most recent call last):
  ...
TypeError: Tensor is unhashable. Instead, use tensor.ref() as the key.
>>> tensor_dict = {x: 'five', y: 'ten'}
Traceback (most recent call last):
  ...
TypeError: Tensor is unhashable. Instead, use tensor.ref() as the key.





Instead, we can use tensor.ref().

>>> tensor_set = {x.ref(), y.ref(), z.ref()}
>>> x.ref() in tensor_set
True
>>> tensor_dict = {x.ref(): 'five', y.ref(): 'ten', z.ref(): 'ten'}
>>> tensor_dict[y.ref()]
'ten'





Also, the reference object provides .deref() function that returns the
original Tensor.

>>> x = tf.constant(5)
>>> x.ref().deref()
<tf.Tensor: shape=(), dtype=int32, numpy=5>










	
set_shape(shape)

	Updates the shape of this tensor.

This method can be called multiple times, and will merge the given
shape with the current shape of this tensor. It can be used to
provide additional information about the shape of this tensor that
cannot be inferred from the graph alone. For example, this can be used
to provide additional information about the shapes of images:

```python
_, image_data = tf.compat.v1.TFRecordReader(…).read(…)
image = tf.image.decode_png(image_data, channels=3)

# The height and width dimensions of image are data dependent, and
# cannot be computed without executing the op.
print(image.shape)
==> TensorShape([Dimension(None), Dimension(None), Dimension(3)])

# We know that each image in this dataset is 28 x 28 pixels.
image.set_shape([28, 28, 3])
print(image.shape)
==> TensorShape([Dimension(28), Dimension(28), Dimension(3)])
```

NOTE: This shape is not enforced at runtime. Setting incorrect shapes can
result in inconsistencies between the statically-known graph and the runtime
value of tensors. For runtime validation of the shape, use tf.ensure_shape
instead.


	参数

	shape – A TensorShape representing the shape of this tensor, a
TensorShapeProto, a list, a tuple, or None.



	Raises

	ValueError – If shape is not compatible with the current shape of
this tensor.










	
shape

	Returns the TensorShape that represents the shape of this tensor.

The shape is computed using shape inference functions that are
registered in the Op for each Operation.  See
tf.TensorShape
for more details of what a shape represents.

The inferred shape of a tensor is used to provide shape
information without having to execute the underlying kernel. This
can be used for debugging and providing early error messages. For
example:

```python
>>> c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
>>> print(c.shape) # will be TensorShape([2, 3])
(2, 3)

>>> d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])
>>> print(d.shape)
(4, 2)





# Raises a ValueError, because c and d do not have compatible
# inner dimensions.
>>> e = tf.matmul(c, d)
Traceback (most recent call last):


…




tensorflow.python.framework.errors_impl.InvalidArgumentError: Matrix
size-incompatible: In[0]: [2,3], In[1]: [4,2] [Op:MatMul] name: MatMul/

# This works because we have compatible shapes.
>>> f = tf.matmul(c, d, transpose_a=True, transpose_b=True)
>>> print(f.shape)
(3, 4)

```

In some cases, the inferred shape may have unknown dimensions. If
the caller has additional information about the values of these
dimensions, Tensor.set_shape() can be used to augment the
inferred shape.


	返回

	A tf.TensorShape representing the shape of this tensor.










	
value_index

	The index of this tensor in the outputs of its Operation.










	
class tensorflow.TensorArray(dtype, size=None, dynamic_size=None, clear_after_read=None, tensor_array_name=None, handle=None, flow=None, infer_shape=True, element_shape=None, colocate_with_first_write_call=True, name=None)

	基类：object

Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays.

This class is meant to be used with dynamic iteration primitives such as
while_loop and map_fn.  It supports gradient back-propagation via special
“flow” control flow dependencies.

Example 1: Plain reading and writing.

>>> ta = tf.TensorArray(tf.float32, size=0, dynamic_size=True, clear_after_read=False)
>>> ta = ta.write(0, 10)
>>> ta = ta.write(1, 20)
>>> ta = ta.write(2, 30)
>>>
>>> ta.read(0)
<tf.Tensor: shape=(), dtype=float32, numpy=10.0>
>>> ta.read(1)
<tf.Tensor: shape=(), dtype=float32, numpy=20.0>
>>> ta.read(2)
<tf.Tensor: shape=(), dtype=float32, numpy=30.0>
>>> ta.stack()
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([10., 20., 30.],
dtype=float32)>





Example 2: Fibonacci sequence algorithm that writes in a loop then returns.

>>> @tf.function
... def fibonacci(n):
...   ta = tf.TensorArray(tf.float32, size=0, dynamic_size=True)
...   ta = ta.unstack([0., 1.])
...
...   for i in range(2, n):
...     ta = ta.write(i, ta.read(i - 1) + ta.read(i - 2))
...
...   return ta.stack()
>>>
>>> fibonacci(7)
<tf.Tensor: shape=(7,), dtype=float32,
numpy=array([0., 1., 1., 2., 3., 5., 8.], dtype=float32)>





Example 3: A simple loop interacting with a tf.Variable.

>>> v = tf.Variable(1)
>>>
>>> @tf.function
... def f(x):
...   ta = tf.TensorArray(tf.int32, size=0, dynamic_size=True)
...
...   for i in tf.range(x):
...     v.assign_add(i)
...     ta = ta.write(i, v)
...
...   return ta.stack()
>>>
>>> f(5)
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 1,  2,  4,  7, 11],
dtype=int32)>





Construct a new TensorArray or wrap an existing TensorArray handle.

A note about the parameter name:

The name of the TensorArray (even if passed in) is uniquified: each time
a new TensorArray is created at runtime it is assigned its own name for
the duration of the run.  This avoids name collisions if a TensorArray
is created within a while_loop.


	参数

	
	dtype – (required) data type of the TensorArray.


	size – (optional) int32 scalar Tensor: the size of the TensorArray.
Required if handle is not provided.


	dynamic_size – (optional) Python bool: If true, writes to the TensorArray
can grow the TensorArray past its initial size.  Default: False.


	clear_after_read – Boolean (optional, default: True).  If True, clear
TensorArray values after reading them.  This disables read-many
semantics, but allows early release of memory.


	tensor_array_name – (optional) Python string: the name of the TensorArray.
This is used when creating the TensorArray handle.  If this value is
set, handle should be None.


	handle – (optional) A Tensor handle to an existing TensorArray.  If this
is set, tensor_array_name should be None. Only supported in graph mode.


	flow – (optional) A float Tensor scalar coming from an existing
TensorArray.flow. Only supported in graph mode.


	infer_shape – (optional, default: True) If True, shape inference
is enabled.  In this case, all elements must have the same shape.


	element_shape – (optional, default: None) A TensorShape object specifying
the shape constraints of each of the elements of the TensorArray.
Need not be fully defined.


	colocate_with_first_write_call – If True, the TensorArray will be
colocated on the same device as the Tensor used on its first write
(write operations include write, unstack, and split).  If False,
the TensorArray will be placed on the device determined by the
device context available during its initialization.


	name – A name for the operation (optional).






	Raises

	
	ValueError – if both handle and tensor_array_name are provided.


	TypeError – if handle is provided but is not a Tensor.









	
close(name=None)

	Close the current TensorArray.

NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
concat(name=None)

	Return the values in the TensorArray as a concatenated Tensor.

All of the values must have been written, their ranks must match, and
and their shapes must all match for all dimensions except the first.


	参数

	name – A name for the operation (optional).



	返回

	All the tensors in the TensorArray concatenated into one tensor.










	
dtype

	The data type of this TensorArray.






	
dynamic_size

	Python bool; if True the TensorArray can grow dynamically.






	
element_shape

	The tf.TensorShape of elements in this TensorArray.






	
flow

	The flow Tensor forcing ops leading to this TensorArray state.






	
gather(indices, name=None)

	Return selected values in the TensorArray as a packed Tensor.

All of selected values must have been written and their shapes
must all match.


	参数

	
	indices – A 1-D Tensor taking values in [0, max_value).  If
the TensorArray is not dynamic, max_value=size().


	name – A name for the operation (optional).






	返回

	The tensors in the TensorArray selected by indices, packed into one
tensor.










	
grad(source, flow=None, name=None)

	




	
handle

	The reference to the TensorArray.






	
identity()

	Returns a TensorArray with the same content and properties.


	返回

	A new TensorArray object with flow that ensures the control dependencies
from the contexts will become control dependencies for writes, reads, etc.
Use this object all for subsequent operations.










	
read(index, name=None)

	Read the value at location index in the TensorArray.


	参数

	
	index – 0-D.  int32 tensor with the index to read from.


	name – A name for the operation (optional).






	返回

	The tensor at index index.










	
scatter(indices, value, name=None)

	Scatter the values of a Tensor in specific indices of a TensorArray.



	Args:

	
	indices: A 1-D Tensor taking values in [0, max_value).  If

	the TensorArray is not dynamic, max_value=size().





value: (N+1)-D.  Tensor of type dtype.  The Tensor to unpack.
name: A name for the operation (optional).



	Returns:

	A new TensorArray object with flow that ensures the scatter occurs.
Use this object all for subsequent operations.



	Raises:

	ValueError: if the shape inference fails.








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
size(name=None)

	Return the size of the TensorArray.






	
split(value, lengths, name=None)

	Split the values of a Tensor into the TensorArray.



	Args:

	value: (N+1)-D.  Tensor of type dtype.  The Tensor to split.
lengths: 1-D.  int32 vector with the lengths to use when splitting


value along its first dimension.




name: A name for the operation (optional).



	Returns:

	A new TensorArray object with flow that ensures the split occurs.
Use this object all for subsequent operations.



	Raises:

	ValueError: if the shape inference fails.








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
stack(name=None)

	Return the values in the TensorArray as a stacked Tensor.

All of the values must have been written and their shapes must all match.
If input shapes have rank-R, then output shape will have rank-(R+1).


	参数

	name – A name for the operation (optional).



	返回

	All the tensors in the TensorArray stacked into one tensor.










	
unstack(value, name=None)

	Unstack the values of a Tensor in the TensorArray.


If input value shapes have rank-R, then the output TensorArray will
contain elements whose shapes are rank-(R-1).


	Args:

	value: (N+1)-D.  Tensor of type dtype.  The Tensor to unstack.
name: A name for the operation (optional).



	Returns:

	A new TensorArray object with flow that ensures the unstack occurs.
Use this object all for subsequent operations.



	Raises:

	ValueError: if the shape inference fails.








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
write(index, value, name=None)

	Write value into index index of the TensorArray.



	Args:

	index: 0-D.  int32 scalar with the index to write to.
value: N-D.  Tensor of type dtype.  The Tensor to write to this index.
name: A name for the operation (optional).



	Returns:

	A new TensorArray object with flow that ensures the write occurs.
Use this object all for subsequent operations.



	Raises:

	ValueError: if there are more writers than specified.








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.










	
class tensorflow.TensorArraySpec(element_shape=None, dtype=tf.float32, dynamic_size=False, infer_shape=True)

	基类：tensorflow.python.framework.type_spec.TypeSpec

Type specification for a tf.TensorArray.

Constructs a type specification for a tf.TensorArray.


	参数

	
	element_shape – The shape of each element in the TensorArray.


	dtype – Data type of the TensorArray.


	dynamic_size – Whether the TensorArray can grow past its initial size.


	infer_shape – Whether shape inference is enabled.









	
static from_value(value)

	




	
is_compatible_with(other)

	Returns true if spec_or_value is compatible with this TypeSpec.






	
most_specific_compatible_type(other)

	Returns the most specific TypeSpec compatible with self and other.


	参数

	other – A TypeSpec.



	Raises

	ValueError – If there is no TypeSpec that is compatible with both self
and other.










	
value_type

	








	
class tensorflow.TensorShape(dims)

	基类：object

Represents the shape of a Tensor.

A TensorShape represents a possibly-partial shape specification for a
Tensor. It may be one of the following:


	Fully-known shape: has a known number of dimensions and a known size
for each dimension. e.g. TensorShape([16, 256])


	Partially-known shape: has a known number of dimensions, and an unknown
size for one or more dimension. e.g. TensorShape([None, 256])


	Unknown shape: has an unknown number of dimensions, and an unknown
size in all dimensions. e.g. TensorShape(None)




If a tensor is produced by an operation of type “Foo”, its shape
may be inferred if there is a registered shape function for
“Foo”. See [Shape
functions](https://tensorflow.org/extend/adding_an_op#shape_functions_in_c)
for details of shape functions and how to register them. Alternatively,
the shape may be set explicitly using tf.Tensor.set_shape.

Creates a new TensorShape with the given dimensions.


	参数

	dims – A list of Dimensions, or None if the shape is unspecified.



	Raises

	TypeError – If dims cannot be converted to a list of dimensions.






	
as_list()

	Returns a list of integers or None for each dimension.


	返回

	A list of integers or None for each dimension.



	Raises

	ValueError – If self is an unknown shape with an unknown rank.










	
as_proto()

	Returns this shape as a TensorShapeProto.






	
assert_has_rank(rank)

	Raises an exception if self is not compatible with the given rank.


	参数

	rank – An integer.



	Raises

	ValueError – If self does not represent a shape with the given rank.










	
assert_is_compatible_with(other)

	Raises exception if self and other do not represent the same shape.

This method can be used to assert that there exists a shape that both
self and other represent.


	参数

	other – Another TensorShape.



	Raises

	ValueError – If self and other do not represent the same shape.










	
assert_is_fully_defined()

	Raises an exception if self is not fully defined in every dimension.


	Raises

	ValueError – If self does not have a known value for every dimension.










	
assert_same_rank(other)

	Raises an exception if self and other do not have compatible ranks.


	参数

	other – Another TensorShape.



	Raises

	ValueError – If self and other do not represent shapes with the
same rank.










	
concatenate(other)

	Returns the concatenation of the dimension in self and other.

N.B. If either self or other is completely unknown,
concatenation will discard information about the other shape. In
future, we might support concatenation that preserves this
information for use with slicing.


	参数

	other – Another TensorShape.



	返回

	A TensorShape whose dimensions are the concatenation of the
dimensions in self and other.










	
dims

	Deprecated.  Returns list of dimensions for this shape.

Suggest TensorShape.as_list instead.


	返回

	A list containing `tf.compat.v1.Dimension`s, or None if the shape is
unspecified.










	
is_compatible_with(other)

	Returns True iff self is compatible with other.

Two possibly-partially-defined shapes are compatible if there
exists a fully-defined shape that both shapes can represent. Thus,
compatibility allows the shape inference code to reason about
partially-defined shapes. For example:


	TensorShape(None) is compatible with all shapes.


	TensorShape([None, None]) is compatible with all two-dimensional
shapes, such as TensorShape([32, 784]), and also TensorShape(None). It is
not compatible with, for example, TensorShape([None]) or
TensorShape([None, None, None]).


	TensorShape([32, None]) is compatible with all two-dimensional shapes
with size 32 in the 0th dimension, and also TensorShape([None, None])
and TensorShape(None). It is not compatible with, for example,
TensorShape([32]), TensorShape([32, None, 1]) or TensorShape([64, None]).


	TensorShape([32, 784]) is compatible with itself, and also
TensorShape([32, None]), TensorShape([None, 784]), TensorShape([None,
None]) and TensorShape(None). It is not compatible with, for example,
TensorShape([32, 1, 784]) or TensorShape([None]).




The compatibility relation is reflexive and symmetric, but not
transitive. For example, TensorShape([32, 784]) is compatible with
TensorShape(None), and TensorShape(None) is compatible with
TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible with
TensorShape([4, 4]).


	参数

	other – Another TensorShape.



	返回

	True iff self is compatible with other.










	
is_fully_defined()

	Returns True iff self is fully defined in every dimension.






	
merge_with(other)

	Returns a TensorShape combining the information in self and other.

The dimensions in self and other are merged elementwise,
according to the rules defined for Dimension.merge_with().


	参数

	other – Another TensorShape.



	返回

	A TensorShape containing the combined information of self and
other.



	Raises

	ValueError – If self and other are not compatible.










	
most_specific_compatible_shape(other)

	Returns the most specific TensorShape compatible with self and other.


	TensorShape([None, 1]) is the most specific TensorShape compatible with
both TensorShape([2, 1]) and TensorShape([5, 1]). Note that
TensorShape(None) is also compatible with above mentioned TensorShapes.


	TensorShape([1, 2, 3]) is the most specific TensorShape compatible with
both TensorShape([1, 2, 3]) and TensorShape([1, 2, 3]). There are more
less specific TensorShapes compatible with above mentioned TensorShapes,
e.g. TensorShape([1, 2, None]), TensorShape(None).





	参数

	other – Another TensorShape.



	返回

	A TensorShape which is the most specific compatible shape of self
and other.










	
ndims

	Deprecated accessor for rank.






	
num_elements()

	Returns the total number of elements, or none for incomplete shapes.






	
rank

	Returns the rank of this shape, or None if it is unspecified.






	
with_rank(rank)

	Returns a shape based on self with the given rank.

This method promotes a completely unknown shape to one with a
known rank.


	参数

	rank – An integer.



	返回

	A shape that is at least as specific as self with the given rank.



	Raises

	ValueError – If self does not represent a shape with the given rank.










	
with_rank_at_least(rank)

	Returns a shape based on self with at least the given rank.


	参数

	rank – An integer.



	返回

	A shape that is at least as specific as self with at least the given
rank.



	Raises

	ValueError – If self does not represent a shape with at least the given
rank.










	
with_rank_at_most(rank)

	Returns a shape based on self with at most the given rank.


	参数

	rank – An integer.



	返回

	A shape that is at least as specific as self with at most the given
rank.



	Raises

	ValueError – If self does not represent a shape with at most the given
rank.














	
class tensorflow.TensorSpec(shape, dtype=tf.float32, name=None)

	基类：tensorflow.python.framework.tensor_spec.DenseSpec, tensorflow.python.framework.type_spec.BatchableTypeSpec

Describes a tf.Tensor.

Metadata for describing the tf.Tensor objects accepted or returned
by some TensorFlow APIs.

Creates a TensorSpec.


	参数

	
	shape – Value convertible to tf.TensorShape. The shape of the tensor.


	dtype – Value convertible to tf.DType. The type of the tensor values.


	name – Optional name for the Tensor.






	Raises

	TypeError – If shape is not convertible to a tf.TensorShape, or dtype is
not convertible to a tf.DType.






	
classmethod from_tensor(tensor, name=None)

	




	
is_compatible_with(spec_or_tensor)

	Returns True if spec_or_tensor is compatible with this TensorSpec.

Two tensors are considered compatible if they have the same dtype
and their shapes are compatible (see tf.TensorShape.is_compatible_with).


	参数

	spec_or_tensor – A tf.TensorSpec or a tf.Tensor



	返回

	True if spec_or_tensor is compatible with self.










	
value_type

	








	
class tensorflow.TypeSpec

	基类：object

Specifies a TensorFlow value type.

A tf.TypeSpec provides metadata describing an object accepted or returned
by TensorFlow APIs.  Concrete subclasses, such as tf.TensorSpec and
tf.RaggedTensorSpec, are used to describe different value types.

For example, tf.function’s input_signature argument accepts a list
(or nested structure) of `TypeSpec`s.

Creating new subclasses of TypeSpec (outside of TensorFlow core) is not
currently supported.  In particular, we may make breaking changes to the
private methods and properties defined by this base class.


	
is_compatible_with(spec_or_value)

	Returns true if spec_or_value is compatible with this TypeSpec.






	
most_specific_compatible_type(other)

	Returns the most specific TypeSpec compatible with self and other.


	参数

	other – A TypeSpec.



	Raises

	ValueError – If there is no TypeSpec that is compatible with both self
and other.










	
value_type

	The Python type for values that are compatible with this TypeSpec.










	
class tensorflow.UnconnectedGradients

	基类：enum.Enum

Controls how gradient computation behaves when y does not depend on x.

The gradient of y with respect to x can be zero in two different ways: there
could be no differentiable path in the graph connecting x to y (and so we can
statically prove that the gradient is zero) or it could be that runtime values
of tensors in a particular execution lead to a gradient of zero (say, if a
relu unit happens to not be activated). To allow you to distinguish between
these two cases you can choose what value gets returned for the gradient when
there is no path in the graph from x to y:


	NONE: Indicates that [None] will be returned if there is no path from x
to y


	ZERO: Indicates that a zero tensor will be returned in the shape of x.





	
NONE = 'none'

	




	
ZERO = 'zero'

	








	
class tensorflow.Variable(initial_value=None, trainable=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, import_scope=None, constraint=None, synchronization=<VariableSynchronization.AUTO: 0>, aggregation=<VariableAggregation.NONE: 0>, shape=None)

	基类：tensorflow.python.training.tracking.base.Trackable

See the [variable guide](https://tensorflow.org/guide/variable).

A variable maintains shared, persistent state manipulated by a program.

The Variable() constructor requires an initial value for the variable, which
can be a Tensor of any type and shape. This initial value defines the type
and shape of the variable. After construction, the type and shape of the
variable are fixed. The value can be changed using one of the assign methods.

>>> v = tf.Variable(1.)
>>> v.assign(2.)
<tf.Variable ... shape=() dtype=float32, numpy=2.0>
>>> v.assign_add(0.5)
<tf.Variable ... shape=() dtype=float32, numpy=2.5>





The shape argument to Variable’s constructor allows you to construct a
variable with a less defined shape than its initial_value:

>>> v = tf.Variable(1., shape=tf.TensorShape(None))
>>> v.assign([[1.]])
<tf.Variable ... shape=<unknown> dtype=float32, numpy=array([[1.]], ...)>





Just like any Tensor, variables created with Variable() can be used as
inputs to operations. Additionally, all the operators overloaded for the
Tensor class are carried over to variables.

>>> w = tf.Variable([[1.], [2.]])
>>> x = tf.constant([[3., 4.]])
>>> tf.matmul(w, x)
<tf.Tensor:... shape=(2, 2), ... numpy=
  array([[3., 4.],
         [6., 8.]], dtype=float32)>
>>> tf.sigmoid(w + x)
<tf.Tensor:... shape=(2, 2), ...>





When building a machine learning model it is often convenient to distinguish
between variables holding trainable model parameters and other variables such
as a step variable used to count training steps. To make this easier, the
variable constructor supports a trainable=<bool>
parameter. tf.GradientTape watches trainable variables by default:

>>> with tf.GradientTape(persistent=True) as tape:
...   trainable = tf.Variable(1.)
...   non_trainable = tf.Variable(2., trainable=False)
...   x1 = trainable * 2.
...   x2 = non_trainable * 3.
>>> tape.gradient(x1, trainable)
<tf.Tensor:... shape=(), dtype=float32, numpy=2.0>
>>> assert tape.gradient(x2, non_trainable) is None  # Unwatched





Variables are automatically tracked when assigned to attributes of types
inheriting from tf.Module.

>>> m = tf.Module()
>>> m.v = tf.Variable([1.])
>>> m.trainable_variables
(<tf.Variable ... shape=(1,) ... numpy=array([1.], dtype=float32)>,)





This tracking then allows saving variable values to
[training checkpoints](https://www.tensorflow.org/guide/checkpoint), or to
[SavedModels](https://www.tensorflow.org/guide/saved_model) which include
serialized TensorFlow graphs.

Variables are often captured and manipulated by `tf.function`s. This works the
same way the un-decorated function would have:

>>> v = tf.Variable(0.)
>>> read_and_decrement = tf.function(lambda: v.assign_sub(0.1))
>>> read_and_decrement()
<tf.Tensor: shape=(), dtype=float32, numpy=-0.1>
>>> read_and_decrement()
<tf.Tensor: shape=(), dtype=float32, numpy=-0.2>





Variables created inside a tf.function must be owned outside the function
and be created only once:

>>> class M(tf.Module):
...   @tf.function
...   def __call__(self, x):
...     if not hasattr(self, "v"):  # Or set self.v to None in __init__
...       self.v = tf.Variable(x)
...     return self.v * x
>>> m = M()
>>> m(2.)
<tf.Tensor: shape=(), dtype=float32, numpy=4.0>
>>> m(3.)
<tf.Tensor: shape=(), dtype=float32, numpy=6.0>
>>> m.v
<tf.Variable ... shape=() dtype=float32, numpy=2.0>





See the tf.function documentation for details.

Creates a new variable with value initial_value. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (caching_device). They will be removed in a future version.
Instructions for updating:
A variable’s value can be manually cached by calling tf.Variable.read_value() under a tf.device scope. The caching_device argument does not work properly.


	参数

	
	initial_value – A Tensor, or Python object convertible to a Tensor,
which is the initial value for the Variable. The initial value must have
a shape specified unless validate_shape is set to False. Can also be a
callable with no argument that returns the initial value when called. In
that case, dtype must be specified. (Note that initializer functions
from init_ops.py must first be bound to a shape before being used here.)


	trainable – If True, GradientTapes automatically watch uses of this
variable. Defaults to True, unless synchronization is set to
ON_READ, in which case it defaults to False.


	validate_shape – If False, allows the variable to be initialized with a
value of unknown shape. If True, the default, the shape of
initial_value must be known.


	caching_device – Optional device string describing where the Variable
should be cached for reading.  Defaults to the Variable’s device. If not
None, caches on another device.  Typical use is to cache on the device
where the Ops using the Variable reside, to deduplicate copying through
Switch and other conditional statements.


	name – Optional name for the variable. Defaults to ‘Variable’ and gets
uniquified automatically.


	variable_def – VariableDef protocol buffer. If not None, recreates the
Variable object with its contents, referencing the variable’s nodes in
the graph, which must already exist. The graph is not changed.
variable_def and the other arguments are mutually exclusive.


	dtype – If set, initial_value will be converted to the given type. If
None, either the datatype will be kept (if initial_value is a
Tensor), or convert_to_tensor will decide.


	import_scope – Optional string. Name scope to add to the Variable. Only
used when initializing from protocol buffer.


	constraint – An optional projection function to be applied to the variable
after being updated by an Optimizer (e.g. used to implement norm
constraints or value constraints for layer weights). The function must
take as input the unprojected Tensor representing the value of the
variable and return the Tensor for the projected value (which must have
the same shape). Constraints are not safe to use when doing asynchronous
distributed training.


	synchronization – Indicates when a distributed a variable will be
aggregated. Accepted values are constants defined in the class
tf.VariableSynchronization. By default the synchronization is set to
AUTO and the current DistributionStrategy chooses when to
synchronize.


	aggregation – Indicates how a distributed variable will be aggregated.
Accepted values are constants defined in the class
tf.VariableAggregation.


	shape – (optional) The shape of this variable. If None, the shape of
initial_value will be used. When setting this argument to
tf.TensorShape(None) (representing an unspecified shape), the variable
can be assigned with values of different shapes.






	Raises

	
	ValueError – If both variable_def and initial_value are specified.


	ValueError – If the initial value is not specified, or does not have a
shape and validate_shape is True.









	
class SaveSliceInfo(full_name=None, full_shape=None, var_offset=None, var_shape=None, save_slice_info_def=None, import_scope=None)

	基类：object

Information on how to save this Variable as a slice.

Provides internal support for saving variables as slices of a larger
variable.  This API is not public and is subject to change.

Available properties:


	full_name


	full_shape


	var_offset


	var_shape




Create a SaveSliceInfo.


	参数

	
	full_name – Name of the full variable of which this Variable is a
slice.


	full_shape – Shape of the full variable, as a list of int.


	var_offset – Offset of this Variable into the full variable, as a list
of int.


	var_shape – Shape of this Variable, as a list of int.


	save_slice_info_def – SaveSliceInfoDef protocol buffer. If not None,
recreates the SaveSliceInfo object its contents. save_slice_info_def
and other arguments are mutually exclusive.


	import_scope – Optional string. Name scope to add. Only used when
initializing from protocol buffer.









	
spec

	Computes the spec string used for saving.






	
to_proto(export_scope=None)

	Returns a SaveSliceInfoDef() proto.


	参数

	export_scope – Optional string. Name scope to remove.



	返回

	A SaveSliceInfoDef protocol buffer, or None if the Variable is not
in the specified name scope.














	
aggregation

	




	
assign(value, use_locking=False, name=None, read_value=True)

	Assigns a new value to the variable.

This is essentially a shortcut for assign(self, value).


	参数

	
	value – A Tensor. The new value for this variable.


	use_locking – If True, use locking during the assignment.


	name – The name of the operation to be created


	read_value – if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.






	返回

	The updated variable. If read_value is false, instead returns None in
Eager mode and the assign op in graph mode.










	
assign_add(delta, use_locking=False, name=None, read_value=True)

	Adds a value to this variable.


This is essentially a shortcut for assign_add(self, delta).





	参数

	
	delta – A Tensor. The value to add to this variable.


	use_locking – If True, use locking during the operation.


	name – The name of the operation to be created


	read_value – if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.






	返回

	The updated variable. If read_value is false, instead returns None in
Eager mode and the assign op in graph mode.










	
assign_sub(delta, use_locking=False, name=None, read_value=True)

	Subtracts a value from this variable.

This is essentially a shortcut for assign_sub(self, delta).


	参数

	
	delta – A Tensor. The value to subtract from this variable.


	use_locking – If True, use locking during the operation.


	name – The name of the operation to be created


	read_value – if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.






	返回

	The updated variable. If read_value is false, instead returns None in
Eager mode and the assign op in graph mode.










	
batch_scatter_update(sparse_delta, use_locking=False, name=None)

	Assigns tf.IndexedSlices to this variable batch-wise.

Analogous to batch_gather. This assumes that this variable and the
sparse_delta IndexedSlices have a series of leading dimensions that are the
same for all of them, and the updates are performed on the last dimension of
indices. In other words, the dimensions should be the following:

num_prefix_dims = sparse_delta.indices.ndims - 1
batch_dim = num_prefix_dims + 1
`sparse_delta.updates.shape = sparse_delta.indices.shape + var.shape[


batch_dim:]`




where

sparse_delta.updates.shape[:num_prefix_dims]
== sparse_delta.indices.shape[:num_prefix_dims]
== var.shape[:num_prefix_dims]

And the operation performed can be expressed as:


	`var[i_1, …, i_n,

	
	sparse_delta.indices[i_1, …, i_n, j]] = sparse_delta.updates[

	i_1, …, i_n, j]`









When sparse_delta.indices is a 1D tensor, this operation is equivalent to
scatter_update.

To avoid this operation one can looping over the first ndims of the
variable and using scatter_update on the subtensors that result of slicing
the first dimension. This is a valid option for ndims = 1, but less
efficient than this implementation.


	参数

	
	sparse_delta – tf.IndexedSlices to be assigned to this variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
constraint

	Returns the constraint function associated with this variable.


	返回

	The constraint function that was passed to the variable constructor.
Can be None if no constraint was passed.










	
count_up_to(limit)

	Increments this variable until it reaches limit. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Prefer Dataset.range instead.

When that Op is run it tries to increment the variable by 1. If
incrementing the variable would bring it above limit then the Op raises
the exception OutOfRangeError.

If no error is raised, the Op outputs the value of the variable before
the increment.

This is essentially a shortcut for count_up_to(self, limit).


	参数

	limit – value at which incrementing the variable raises an error.



	返回

	A Tensor that will hold the variable value before the increment. If no
other Op modifies this variable, the values produced will all be
distinct.










	
device

	The device of this variable.






	
dtype

	The DType of this variable.






	
eval(session=None)

	In a session, computes and returns the value of this variable.

This is not a graph construction method, it does not add ops to the graph.

This convenience method requires a session where the graph
containing this variable has been launched. If no session is
passed, the default session is used.  See tf.compat.v1.Session for more
information on launching a graph and on sessions.

```python
v = tf.Variable([1, 2])
init = tf.compat.v1.global_variables_initializer()


	with tf.compat.v1.Session() as sess:

	sess.run(init)
# Usage passing the session explicitly.
print(v.eval(sess))
# Usage with the default session.  The ‘with’ block
# above makes ‘sess’ the default session.
print(v.eval())





```


	参数

	session – The session to use to evaluate this variable. If none, the
default session is used.



	返回

	A numpy ndarray with a copy of the value of this variable.










	
experimental_ref()

	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use ref() instead.






	
static from_proto(variable_def, import_scope=None)

	Returns a Variable object created from variable_def.






	
gather_nd(indices, name=None)

	Gather slices from params into a Tensor with shape specified by indices.

See tf.gather_nd for details.


	参数

	
	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as params.










	
get_shape()

	Alias of Variable.shape.






	
graph

	The Graph of this variable.






	
initial_value

	Returns the Tensor used as the initial value for the variable.

Note that this is different from initialized_value() which runs
the op that initializes the variable before returning its value.
This method returns the tensor that is used by the op that initializes
the variable.


	返回

	A Tensor.










	
initialized_value()

	Returns the value of the initialized variable. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.

You should use this instead of the variable itself to initialize another
variable with a value that depends on the value of this variable.

`python
# Initialize 'v' with a random tensor.
v = tf.Variable(tf.random.truncated_normal([10, 40]))
# Use `initialized_value` to guarantee that `v` has been
# initialized before its value is used to initialize `w`.
# The random values are picked only once.
w = tf.Variable(v.initialized_value() * 2.0)
`


	返回

	A Tensor holding the value of this variable after its initializer
has run.










	
initializer

	The initializer operation for this variable.






	
load(value, session=None)

	Load new value into this variable. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.

Writes new value to variable’s memory. Doesn’t add ops to the graph.

This convenience method requires a session where the graph
containing this variable has been launched. If no session is
passed, the default session is used.  See tf.compat.v1.Session for more
information on launching a graph and on sessions.

```python
v = tf.Variable([1, 2])
init = tf.compat.v1.global_variables_initializer()


	with tf.compat.v1.Session() as sess:

	sess.run(init)
# Usage passing the session explicitly.
v.load([2, 3], sess)
print(v.eval(sess)) # prints [2 3]
# Usage with the default session.  The ‘with’ block
# above makes ‘sess’ the default session.
v.load([3, 4], sess)
print(v.eval()) # prints [3 4]





```


	参数

	
	value – New variable value


	session – The session to use to evaluate this variable. If none, the
default session is used.






	Raises

	ValueError – Session is not passed and no default session










	
name

	The name of this variable.






	
op

	The Operation of this variable.






	
read_value()

	Returns the value of this variable, read in the current context.

Can be different from value() if it’s on another device, with control
dependencies, etc.


	返回

	A Tensor containing the value of the variable.










	
ref()

	Returns a hashable reference object to this Variable.

The primary use case for this API is to put variables in a set/dictionary.
We can’t put variables in a set/dictionary as variable.__hash__() is no
longer available starting Tensorflow 2.0.

The following will raise an exception starting 2.0

>>> x = tf.Variable(5)
>>> y = tf.Variable(10)
>>> z = tf.Variable(10)
>>> variable_set = {x, y, z}
Traceback (most recent call last):
  ...
TypeError: Variable is unhashable. Instead, use tensor.ref() as the key.
>>> variable_dict = {x: 'five', y: 'ten'}
Traceback (most recent call last):
  ...
TypeError: Variable is unhashable. Instead, use tensor.ref() as the key.





Instead, we can use variable.ref().

>>> variable_set = {x.ref(), y.ref(), z.ref()}
>>> x.ref() in variable_set
True
>>> variable_dict = {x.ref(): 'five', y.ref(): 'ten', z.ref(): 'ten'}
>>> variable_dict[y.ref()]
'ten'





Also, the reference object provides .deref() function that returns the
original Variable.

>>> x = tf.Variable(5)
>>> x.ref().deref()
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=5>










	
scatter_add(sparse_delta, use_locking=False, name=None)

	Adds tf.IndexedSlices to this variable.


	参数

	
	sparse_delta – tf.IndexedSlices to be added to this variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_div(sparse_delta, use_locking=False, name=None)

	Divide this variable by tf.IndexedSlices.


	参数

	
	sparse_delta – tf.IndexedSlices to divide this variable by.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_max(sparse_delta, use_locking=False, name=None)

	Updates this variable with the max of tf.IndexedSlices and itself.


	参数

	
	sparse_delta – tf.IndexedSlices to use as an argument of max with this
variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_min(sparse_delta, use_locking=False, name=None)

	Updates this variable with the min of tf.IndexedSlices and itself.


	参数

	
	sparse_delta – tf.IndexedSlices to use as an argument of min with this
variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_mul(sparse_delta, use_locking=False, name=None)

	Multiply this variable by tf.IndexedSlices.


	参数

	
	sparse_delta – tf.IndexedSlices to multiply this variable by.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_nd_add(indices, updates, name=None)

	Applies sparse addition to individual values or slices in a Variable.

The Variable has rank P and indices is a Tensor of rank Q.

indices must be integer tensor, containing indices into self.
It must be shape [d_0, …, d_{Q-2}, K] where 0 < K <= P.

The innermost dimension of indices (with length K) corresponds to
indices into elements (if K = P) or slices (if K < P) along the `K`th
dimension of self.

updates is Tensor of rank Q-1+P-K with shape:

`
[d_0, ..., d_{Q-2}, self.shape[K], ..., self.shape[P-1]].
`

For example, say we want to add 4 scattered elements to a rank-1 tensor to
8 elements. In Python, that update would look like this:


	```python

	v = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
add = v.scatter_nd_add(indices, updates)
with tf.compat.v1.Session() as sess:


print sess.run(add)








```

The resulting update to v would look like this:


[1, 13, 3, 14, 14, 6, 7, 20]




See tf.scatter_nd for more details about how to make updates to
slices.


	参数

	
	indices – The indices to be used in the operation.


	updates – The values to be used in the operation.


	name – the name of the operation.






	返回

	The updated variable.










	
scatter_nd_sub(indices, updates, name=None)

	Applies sparse subtraction to individual values or slices in a Variable.

Assuming the variable has rank P and indices is a Tensor of rank Q.

indices must be integer tensor, containing indices into self.
It must be shape [d_0, …, d_{Q-2}, K] where 0 < K <= P.

The innermost dimension of indices (with length K) corresponds to
indices into elements (if K = P) or slices (if K < P) along the `K`th
dimension of self.

updates is Tensor of rank Q-1+P-K with shape:

`
[d_0, ..., d_{Q-2}, self.shape[K], ..., self.shape[P-1]].
`

For example, say we want to add 4 scattered elements to a rank-1 tensor to
8 elements. In Python, that update would look like this:


	```python

	v = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
op = v.scatter_nd_sub(indices, updates)
with tf.compat.v1.Session() as sess:


print sess.run(op)








```

The resulting update to v would look like this:


[1, -9, 3, -6, -6, 6, 7, -4]




See tf.scatter_nd for more details about how to make updates to
slices.


	参数

	
	indices – The indices to be used in the operation.


	updates – The values to be used in the operation.


	name – the name of the operation.






	返回

	The updated variable.










	
scatter_nd_update(indices, updates, name=None)

	Applies sparse assignment to individual values or slices in a Variable.

The Variable has rank P and indices is a Tensor of rank Q.

indices must be integer tensor, containing indices into self.
It must be shape [d_0, …, d_{Q-2}, K] where 0 < K <= P.

The innermost dimension of indices (with length K) corresponds to
indices into elements (if K = P) or slices (if K < P) along the `K`th
dimension of self.

updates is Tensor of rank Q-1+P-K with shape:

`
[d_0, ..., d_{Q-2}, self.shape[K], ..., self.shape[P-1]].
`

For example, say we want to add 4 scattered elements to a rank-1 tensor to
8 elements. In Python, that update would look like this:


	```python

	v = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
op = v.scatter_nd_assign(indices, updates)
with tf.compat.v1.Session() as sess:


print sess.run(op)








```

The resulting update to v would look like this:


[1, 11, 3, 10, 9, 6, 7, 12]




See tf.scatter_nd for more details about how to make updates to
slices.


	参数

	
	indices – The indices to be used in the operation.


	updates – The values to be used in the operation.


	name – the name of the operation.






	返回

	The updated variable.










	
scatter_sub(sparse_delta, use_locking=False, name=None)

	Subtracts tf.IndexedSlices from this variable.


	参数

	
	sparse_delta – tf.IndexedSlices to be subtracted from this variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_update(sparse_delta, use_locking=False, name=None)

	Assigns tf.IndexedSlices to this variable.


	参数

	
	sparse_delta – tf.IndexedSlices to be assigned to this variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
set_shape(shape)

	Overrides the shape for this variable.


	参数

	shape – the TensorShape representing the overridden shape.










	
shape

	The TensorShape of this variable.


	返回

	A TensorShape.










	
sparse_read(indices, name=None)

	Gather slices from params axis axis according to indices.

This function supports a subset of tf.gather, see tf.gather for details on
usage.


	参数

	
	indices – The index Tensor.  Must be one of the following types: int32,
int64. Must be in range [0, params.shape[axis]).


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as params.










	
synchronization

	




	
to_proto(export_scope=None)

	Converts a Variable to a VariableDef protocol buffer.


	参数

	export_scope – Optional string. Name scope to remove.



	返回

	A VariableDef protocol buffer, or None if the Variable is not
in the specified name scope.










	
trainable

	




	
value()

	Returns the last snapshot of this variable.

You usually do not need to call this method as all ops that need the value
of the variable call it automatically through a convert_to_tensor() call.

Returns a Tensor which holds the value of the variable.  You can not
assign a new value to this tensor as it is not a reference to the variable.

To avoid copies, if the consumer of the returned value is on the same device
as the variable, this actually returns the live value of the variable, not
a copy.  Updates to the variable are seen by the consumer.  If the consumer
is on a different device it will get a copy of the variable.


	返回

	A Tensor containing the value of the variable.














	
tensorflow.VariableAggregation

	tensorflow.python.ops.variables.VariableAggregationV2 的别名






	
class tensorflow.VariableSynchronization

	基类：enum.Enum

Indicates when a distributed variable will be synced.


	AUTO: Indicates that the synchronization will be determined by the current
DistributionStrategy (eg. With MirroredStrategy this would be
ON_WRITE).


	NONE: Indicates that there will only be one copy of the variable, so
there is no need to sync.


	ON_WRITE: Indicates that the variable will be updated across devices
every time it is written.


	ON_READ: Indicates that the variable will be aggregated across devices
when it is read (eg. when checkpointing or when evaluating an op that uses
the variable).





	
AUTO = 0

	




	
NONE = 1

	




	
ON_READ = 3

	




	
ON_WRITE = 2

	








	
tensorflow.abs(x, name=None)

	Computes the absolute value of a tensor.

Given a tensor of integer or floating-point values, this operation returns a
tensor of the same type, where each element contains the absolute value of the
corresponding element in the input.

Given a tensor x of complex numbers, this operation returns a tensor of type
float32 or float64 that is the absolute value of each element in x. For
a complex number \(a + bj\), its absolute value is computed as \(sqrt{a^2
+ b^2}\).  For example:

>>> x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
>>> tf.abs(x)
<tf.Tensor: shape=(2, 1), dtype=float64, numpy=
array([[5.25594901],
       [6.60492241]])>






	参数

	
	x – A Tensor or SparseTensor of type float16, float32, float64,
int32, int64, complex64 or complex128.


	name – A name for the operation (optional).






	返回

	
	A Tensor or SparseTensor of the same size, type and sparsity as x,

	with absolute values. Note, for complex64 or complex128 input, the
returned Tensor will be of type float32 or float64, respectively.





If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.abs(x.values, …), x.dense_shape)












	
tensorflow.acos(x, name=None)

	Computes acos of x element-wise.


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.acosh(x, name=None)

	Computes inverse hyperbolic cosine of x element-wise.

Given an input tensor, the function computes inverse hyperbolic cosine of every element.
Input range is [1, inf]. It returns nan if the input lies outside the range.

`python
x = tf.constant([-2, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.acosh(x) ==> [nan nan 0. 0.62236255 5.9914584 9.903487 inf]
`


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.add(x, y, name=None)

	Returns x + y element-wise.

NOTE: math.add supports broadcasting. AddN does not. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.add_n(inputs, name=None)

	Adds all input tensors element-wise.

tf.math.add_n performs the same operation as tf.math.accumulate_n, but it
waits for all of its inputs to be ready before beginning to sum.
This buffering can result in higher memory consumption when inputs are ready
at different times, since the minimum temporary storage required is
proportional to the input size rather than the output size.

This op does not [broadcast](
https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html)
its inputs. If you need broadcasting, use tf.math.add (or the + operator)
instead.

For example:

>>> a = tf.constant([[3, 5], [4, 8]])
>>> b = tf.constant([[1, 6], [2, 9]])
>>> tf.math.add_n([a, b, a])
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 7, 16],
       [10, 25]], dtype=int32)>






	参数

	
	inputs – A list of tf.Tensor or tf.IndexedSlices objects, each with the
same shape and type. tf.IndexedSlices objects will be converted into
dense tensors prior to adding.


	name – A name for the operation (optional).






	返回

	A tf.Tensor of the same shape and type as the elements of inputs.



	Raises

	
	ValueError – If inputs don’t all have same shape and dtype or the shape


	cannot be inferred.













	
tensorflow.argmax(input, axis=None, output_type=tf.int64, name=None)

	Returns the index with the largest value across axes of a tensor.

Note that in case of ties the identity of the return value is not guaranteed.

For example:

>>> A = tf.constant([2, 20, 30, 3, 6])
>>> tf.math.argmax(A)  # A[2] is maximum in tensor A
<tf.Tensor: shape=(), dtype=int64, numpy=2>
>>> B = tf.constant([[2, 20, 30, 3, 6], [3, 11, 16, 1, 8],
...                  [14, 45, 23, 5, 27]])
>>> tf.math.argmax(B, 0)
<tf.Tensor: shape=(5,), dtype=int64, numpy=array([2, 2, 0, 2, 2])>
>>> tf.math.argmax(B, 1)
<tf.Tensor: shape=(3,), dtype=int64, numpy=array([2, 2, 1])>






	参数

	
	input – A Tensor.


	axis – An integer, the axis to reduce across. Default to 0.


	output_type – An optional output dtype (tf.int32 or tf.int64). Defaults
to tf.int64.


	name – An optional name for the operation.






	返回

	A Tensor of type output_type.










	
tensorflow.argmin(input, axis=None, output_type=tf.int64, name=None)

	Returns the index with the smallest value across axes of a tensor.

Note that in case of ties the identity of the return value is not guaranteed.


	参数

	
	input – A Tensor. Must be one of the following types: float32, float64,
int32, uint8, int16, int8, complex64, int64, qint8,
quint8, qint32, bfloat16, uint16, complex128, half, uint32,
uint64.


	axis – A Tensor. Must be one of the following types: int32, int64.
int32 or int64, must be in the range -rank(input), rank(input)).
Describes which axis of the input Tensor to reduce across. For vectors,
use axis = 0.


	output_type – An optional tf.DType from: tf.int32, tf.int64. Defaults to
tf.int64.


	name – A name for the operation (optional).






	返回

	A Tensor of type output_type.





Usage:
`python
import tensorflow as tf
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
b = tf.math.argmin(input = a)
c = tf.keras.backend.eval(b)
# c = 0
# here a[0] = 1 which is the smallest element of a across axis 0
`






	
tensorflow.argsort(values, axis=-1, direction='ASCENDING', stable=False, name=None)

	Returns the indices of a tensor that give its sorted order along an axis.

For a 1D tensor, tf.gather(values, tf.argsort(values)) is equivalent to
tf.sort(values). For higher dimensions, the output has the same shape as
values, but along the given axis, values represent the index of the sorted
element in that slice of the tensor at the given position.

Usage:

`python
import tensorflow as tf
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
b = tf.argsort(a,axis=-1,direction='ASCENDING',stable=False,name=None)
c = tf.keras.backend.eval(b)
# Here, c = [0 3 1 2 5 4]
`


	参数

	
	values – 1-D or higher numeric Tensor.


	axis – The axis along which to sort. The default is -1, which sorts the last
axis.


	direction – The direction in which to sort the values (‘ASCENDING’ or
‘DESCENDING’).


	stable – If True, equal elements in the original tensor will not be
re-ordered in the returned order. Unstable sort is not yet implemented,
but will eventually be the default for performance reasons. If you require
a stable order, pass stable=True for forwards compatibility.


	name – Optional name for the operation.






	返回

	
	An int32 Tensor with the same shape as values. The indices that would

	sort each slice of the given values along the given axis.









	Raises

	ValueError – If axis is not a constant scalar, or the direction is invalid.










	
tensorflow.as_dtype(type_value)

	Converts the given type_value to a DType.


	参数

	type_value – A value that can be converted to a tf.DType object. This may
currently be a tf.DType object, a [DataType
enum](https://www.tensorflow.org/code/tensorflow/core/framework/types.proto),


a string type name, or a numpy.dtype.








	返回

	A DType corresponding to type_value.



	Raises

	TypeError – If type_value cannot be converted to a DType.










	
tensorflow.as_string(input, precision=-1, scientific=False, shortest=False, width=-1, fill='', name=None)

	Converts each entry in the given tensor to strings.

Supports many numeric types and boolean.

For Unicode, see the
[https://www.tensorflow.org/tutorials/representation/unicode](Working with Unicode text)
tutorial.

Examples:

>>> tf.strings.as_string([3, 2])
<tf.Tensor: shape=(2,), dtype=string, numpy=array([b'3', b'2'], dtype=object)>
>>> tf.strings.as_string([3.1415926, 2.71828], precision=2).numpy()
array([b'3.14', b'2.72'], dtype=object)






	参数

	
	input – A Tensor. Must be one of the following types: int8, int16, int32, int64, complex64, complex128, float32, float64, bool.


	precision – An optional int. Defaults to -1.
The post-decimal precision to use for floating point numbers.
Only used if precision > -1.


	scientific – An optional bool. Defaults to False.
Use scientific notation for floating point numbers.


	shortest – An optional bool. Defaults to False.
Use shortest representation (either scientific or standard) for
floating point numbers.


	width – An optional int. Defaults to -1.
Pad pre-decimal numbers to this width.
Applies to both floating point and integer numbers.
Only used if width > -1.


	fill – An optional string. Defaults to “”.
The value to pad if width > -1.  If empty, pads with spaces.
Another typical value is ‘0’.  String cannot be longer than 1 character.


	name – A name for the operation (optional).






	返回

	A Tensor of type string.










	
tensorflow.asin(x, name=None)

	Computes the trignometric inverse sine of x element-wise.

The tf.math.asin operation returns the inverse of tf.math.sin, such that
if y = tf.math.sin(x) then, x = tf.math.asin(y).

Note: The output of tf.math.asin will lie within the invertible range
of sine, i.e [-pi/2, pi/2].

For example:

```python
# Note: [1.047, 0.785] ~= [(pi/3), (pi/4)]
x = tf.constant([1.047, 0.785])
y = tf.math.sin(x) # [0.8659266, 0.7068252]

tf.math.asin(y) # [1.047, 0.785] = x
```


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.asinh(x, name=None)

	Computes inverse hyperbolic sine of x element-wise.


Given an input tensor, this function computes inverse hyperbolic sine
for every element in the tensor. Both input and output has a range of
[-inf, inf].

`python
x = tf.constant([-float("inf"), -2, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.asinh(x) ==> [-inf -1.4436355 -0.4812118 0.8813736 1.0159732 5.991471 9.903487 inf]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.assert_equal(x, y, message=None, summarize=None, name=None)

	Assert the condition x == y holds element-wise.

This Op checks that x[i] == y[i] holds for every pair of (possibly
broadcast) elements of x and y. If both x and y are empty, this is
trivially satisfied.

If x and y are not equal, message, as well as the first summarize
entries of x and y are printed, and InvalidArgumentError is raised.


	参数

	
	x – Numeric Tensor.


	y – Numeric Tensor, same dtype as and broadcastable to x.


	message – A string to prefix to the default message.


	summarize – Print this many entries of each tensor.


	name – A name for this operation (optional).  Defaults to “assert_equal”.






	返回

	
	Op that raises InvalidArgumentError if x == y is False. This can be

	used with tf.control_dependencies inside of `tf.function`s to block
followup computation until the check has executed.





@compatibility(eager)
returns None
@end_compatibility





	Raises

	InvalidArgumentError – if the check can be performed immediately and
x == y is False. The check can be performed immediately during eager
execution or if x and y are statically known.










	
tensorflow.assert_greater(x, y, message=None, summarize=None, name=None)

	Assert the condition x > y holds element-wise.

This Op checks that x[i] > y[i] holds for every pair of (possibly
broadcast) elements of x and y. If both x and y are empty, this is
trivially satisfied.

If x is not greater than y element-wise, message, as well as the first
summarize entries of x and y are printed, and InvalidArgumentError is
raised.


	参数

	
	x – Numeric Tensor.


	y – Numeric Tensor, same dtype as and broadcastable to x.


	message – A string to prefix to the default message.


	summarize – Print this many entries of each tensor.


	name – A name for this operation (optional).  Defaults to “assert_greater”.






	返回

	
	Op that raises InvalidArgumentError if x > y is False. This can be

	used with tf.control_dependencies inside of `tf.function`s to block
followup computation until the check has executed.





@compatibility(eager)
returns None
@end_compatibility





	Raises

	InvalidArgumentError – if the check can be performed immediately and
x > y is False. The check can be performed immediately during eager
execution or if x and y are statically known.










	
tensorflow.assert_less(x, y, message=None, summarize=None, name=None)

	Assert the condition x < y holds element-wise.

This Op checks that x[i] < y[i] holds for every pair of (possibly
broadcast) elements of x and y. If both x and y are empty, this is
trivially satisfied.

If x is not less than y element-wise, message, as well as the first
summarize entries of x and y are printed, and InvalidArgumentError is
raised.


	参数

	
	x – Numeric Tensor.


	y – Numeric Tensor, same dtype as and broadcastable to x.


	message – A string to prefix to the default message.


	summarize – Print this many entries of each tensor.


	name – A name for this operation (optional).  Defaults to “assert_less”.






	返回

	Op that raises InvalidArgumentError if x < y is False.
This can be used with tf.control_dependencies inside of `tf.function`s
to block followup computation until the check has executed.
@compatibility(eager)
returns None
@end_compatibility



	Raises

	InvalidArgumentError – if the check can be performed immediately and
x < y is False. The check can be performed immediately during eager
execution or if x and y are statically known.










	
tensorflow.assert_rank(x, rank, message=None, name=None)

	Assert that x has rank equal to rank.

This Op checks that the rank of x is equal to rank.

If x has a different rank, message, as well as the shape of x are
printed, and InvalidArgumentError is raised.


	参数

	
	x – Tensor.


	rank – Scalar integer Tensor.


	message – A string to prefix to the default message.


	name – A name for this operation (optional). Defaults to
“assert_rank”.






	返回

	Op raising InvalidArgumentError unless x has specified rank.
If static checks determine x has correct rank, a no_op is returned.
This can be used with tf.control_dependencies inside of `tf.function`s
to block followup computation until the check has executed.
@compatibility(eager)
returns None
@end_compatibility



	Raises

	InvalidArgumentError – if the check can be performed immediately and
x does not have rank rank. The check can be performed immediately
during eager execution or if the shape of x is statically known.










	
tensorflow.atan(x, name=None)

	Computes the trignometric inverse tangent of x element-wise.

The tf.math.atan operation returns the inverse of tf.math.tan, such that
if y = tf.math.tan(x) then, x = tf.math.atan(y).

Note: The output of tf.math.atan will lie within the invertible range
of tan, i.e (-pi/2, pi/2).

For example:

```python
# Note: [1.047, 0.785] ~= [(pi/3), (pi/4)]
x = tf.constant([1.047, 0.785])
y = tf.math.tan(x) # [1.731261, 0.99920404]

tf.math.atan(y) # [1.047, 0.785] = x
```


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.atan2(y, x, name=None)

	Computes arctangent of y/x element-wise, respecting signs of the arguments.

This is the angle ( theta in [-pi, pi] ) such that
[ x = r cos(theta) ]
and
[ y = r sin(theta) ]
where (r = sqrt(x^2 + y^2) ).


	参数

	
	y – A Tensor. Must be one of the following types: bfloat16, half, float32, float64.


	x – A Tensor. Must have the same type as y.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as y.










	
tensorflow.atanh(x, name=None)

	Computes inverse hyperbolic tangent of x element-wise.


Given an input tensor, this function computes inverse hyperbolic tangent
for every element in the tensor. Input range is [-1,1] and output range is
[-inf, inf]. If input is -1, output will be -inf and if the
input is 1, output will be inf. Values outside the range will have
nan as output.

`python
x = tf.constant([-float("inf"), -1, -0.5, 1, 0, 0.5, 10, float("inf")])
tf.math.atanh(x) ==> [nan -inf -0.54930615 inf  0. 0.54930615 nan nan]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.batch_to_space(input, block_shape, crops, name=None)

	BatchToSpace for N-D tensors of type T.

This operation reshapes the “batch” dimension 0 into M + 1 dimensions of
shape block_shape + [batch], interleaves these blocks back into the grid
defined by the spatial dimensions [1, …, M], to obtain a result with the
same rank as the input.  The spatial dimensions of this intermediate result
are then optionally cropped according to crops to produce the output.  This
is the reverse of SpaceToBatch (see tf.space_to_batch).


	参数

	
	input – A N-D Tensor with shape input_shape = [batch] + spatial_shape +
remaining_shape, where spatial_shape has M dimensions.


	block_shape – A 1-D Tensor with shape [M]. Must be one of the following
types: int32, int64. All values must be >= 1. For backwards
compatibility with TF 1.0, this parameter may be an int, in which case it
is converted to
numpy.array([block_shape, block_shape],
dtype=numpy.int64).


	crops – A  2-D Tensor with shape [M, 2]. Must be one of the
following types: int32, int64. All values must be >= 0.
crops[i] = [crop_start, crop_end] specifies the amount to crop from
input dimension i + 1, which corresponds to spatial dimension i.
It is required that
crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1].
This operation is equivalent to the following steps:
1. Reshape input to reshaped of shape: [block_shape[0], …,


block_shape[M-1], batch / prod(block_shape), input_shape[1], …,
input_shape[N-1]]





	Permute dimensions of reshaped to produce permuted of shape
[batch / prod(block_shape),  input_shape[1], block_shape[0], …,
input_shape[M], block_shape[M-1], input_shape[M+1],





…, input_shape[N-1]]





	Reshape permuted to produce reshaped_permuted of shape
[batch / prod(block_shape), input_shape[1] * block_shape[0], …,
input_shape[M] * block_shape[M-1], input_shape[M+1], …,
input_shape[N-1]]


	Crop the start and end of dimensions [1, …, M] of
reshaped_permuted according to crops to produce the output
of shape:
[batch / prod(block_shape),  input_shape[1] *


block_shape[0] - crops[0,0] - crops[0,1], …, input_shape[M] *
block_shape[M-1] - crops[M-1,0] - crops[M-1,1],  input_shape[M+1],
…, input_shape[N-1]]








Some Examples:
(1) For the following input of shape [4, 1, 1, 1],


block_shape = [2, 2], and crops = [[0, 0], [0, 0]]:
```python
[[[[1]]],


[[[2]]],
[[[3]]],
[[[4]]]]




`
The output tensor has shape `[1, 2, 2, 1]` and value:
` x = [[[[1], [2]],


[[3], [4]]]] ```








	For the following input of shape [4, 1, 1, 3],





block_shape = [2, 2], and crops = [[0, 0], [0, 0]]:
```python
[[[1,  2,   3]],


[[4,  5,   6]],
[[7,  8,   9]],
[[10, 11, 12]]]




```
The output tensor has shape [1, 2, 2, 3] and value:
```python
x = [[[[1, 2, 3], [4,  5,  6 ]],


[[7, 8, 9], [10, 11, 12]]]]




```





	For the following






input of shape [4, 2, 2, 1],
block_shape = [2, 2], and crops = [[0, 0], [0, 0]]:
```python
x = [[[[1], [3]], [[ 9], [11]]],


[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]




```
The output tensor has shape [1, 4, 4, 1] and value:
```python
x = [[[1],  [2],  [ 3], [ 4]],


[[5],  [6],  [ 7], [ 8]],
[[9],  [10], [11], [12]],
[[13], [14], [15], [16]]]




```





	For the following input of shape





[8, 1, 3, 1],
block_shape = [2, 2], and crops = [[0, 0], [2, 0]]:
```python
x = [[[[0], [ 1], [ 3]]],


[[[0], [ 9], [11]]],
[[[0], [ 2], [ 4]]],
[[[0], [10], [12]]],
[[[0], [ 5], [ 7]]],
[[[0], [13], [15]]],
[[[0], [ 6], [ 8]]],
[[[0], [14], [16]]]]




```
The output tensor has shape [2, 2, 4, 1] and value:
```python
x = [[[[ 1], [ 2], [ 3], [ 4]],



[[ 5], [ 6], [ 7], [ 8]]],





	[[[ 9], [10], [11], [12]],

	[[13], [14], [15], [16]]]] ```

















	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.bitcast(input, type, name=None)

	Bitcasts a tensor from one type to another without copying data.

Given a tensor input, this operation returns a tensor that has the same buffer
data as input with datatype type.

If the input datatype T is larger than the output datatype type then the
shape changes from […] to […, sizeof(T)/sizeof(type)].

If T is smaller than type, the operator requires that the rightmost
dimension be equal to sizeof(type)/sizeof(T). The shape then goes from
[…, sizeof(type)/sizeof(T)] to […].

tf.bitcast() and tf.cast() work differently when real dtype is casted as a complex dtype
(e.g. tf.complex64 or tf.complex128) as tf.cast() make imaginary part 0 while tf.bitcast()
gives module error.
For example,

Example 1:

>>> a = [1., 2., 3.]
>>> equality_bitcast = tf.bitcast(a, tf.complex128)
Traceback (most recent call last):
...
InvalidArgumentError: Cannot bitcast from 1 to 18 [Op:Bitcast]
>>> equality_cast = tf.cast(a, tf.complex128)
>>> print(equality_cast)
tf.Tensor([1.+0.j 2.+0.j 3.+0.j], shape=(3,), dtype=complex128)





Example 2:

>>> tf.bitcast(tf.constant(0xffffffff, dtype=tf.uint32), tf.uint8)
<tf.Tensor: shape=(4,), dtype=uint8, numpy=array([255, 255, 255, 255], dtype=uint8)>





Example 3:

>>> x = [1., 2., 3.]
>>> y = [0., 2., 3.]
>>> equality= tf.equal(x,y)
>>> equality_cast = tf.cast(equality,tf.float32)
>>> equality_bitcast = tf.bitcast(equality_cast,tf.uint8)
>>> print(equality)
tf.Tensor([False True True], shape=(3,), dtype=bool)
>>> print(equality_cast)
tf.Tensor([0. 1. 1.], shape=(3,), dtype=float32)
>>> print(equality_bitcast)
tf.Tensor(
    [[  0   0   0   0]
     [  0   0 128  63]
     [  0   0 128  63]], shape=(3, 4), dtype=uint8)





NOTE: Bitcast is implemented as a low-level cast, so machines with different
endian orderings will give different results.


	参数

	
	input – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32.


	type – A tf.DType from: tf.bfloat16, tf.half, tf.float32, tf.float64, tf.int64, tf.int32, tf.uint8, tf.uint16, tf.uint32, tf.uint64, tf.int8, tf.int16, tf.complex64, tf.complex128, tf.qint8, tf.quint8, tf.qint16, tf.quint16, tf.qint32.


	name – A name for the operation (optional).






	返回

	A Tensor of type type.










	
tensorflow.boolean_mask(tensor, mask, axis=None, name='boolean_mask')

	Apply boolean mask to tensor.

Numpy equivalent is tensor[mask].

`python
# 1-D example
tensor = [0, 1, 2, 3]
mask = np.array([True, False, True, False])
boolean_mask(tensor, mask)  # [0, 2]
`

In general, 0 < dim(mask) = K <= dim(tensor), and mask’s shape must match
the first K dimensions of tensor’s shape.  We then have:


boolean_mask(tensor, mask)[i, j1,…,jd] = tensor[i1,…,iK,j1,…,jd]




where (i1,…,iK) is the ith True entry of mask (row-major order).
The axis could be used with mask to indicate the axis to mask from.
In that case, axis + dim(mask) <= dim(tensor) and mask’s shape must match
the first axis + dim(mask) dimensions of tensor’s shape.

See also: tf.ragged.boolean_mask, which can be applied to both dense and
ragged tensors, and can be used if you need to preserve the masked dimensions
of tensor (rather than flattening them, as tf.boolean_mask does).


	参数

	
	tensor – N-D tensor.


	mask – K-D boolean tensor, K <= N and K must be known statically.


	axis – A 0-D int Tensor representing the axis in tensor to mask from. By
default, axis is 0 which will mask from the first dimension. Otherwise K +
axis <= N.


	name – A name for this operation (optional).






	返回

	(N-K+1)-dimensional tensor populated by entries in tensor corresponding
to True values in mask.



	Raises

	ValueError – If shapes do not conform.





Examples:

`python
# 2-D example
tensor = [[1, 2], [3, 4], [5, 6]]
mask = np.array([True, False, True])
boolean_mask(tensor, mask)  # [[1, 2], [5, 6]]
`






	
tensorflow.broadcast_dynamic_shape(shape_x, shape_y)

	Computes the shape of a broadcast given symbolic shapes.

When shape_x and shape_y are Tensors representing shapes (i.e. the result of
calling tf.shape on another Tensor) this computes a Tensor which is the shape
of the result of a broadcasting op applied in tensors of shapes shape_x and
shape_y.

For example, if shape_x is [1, 2, 3] and shape_y is [5, 1, 3], the result is a
Tensor whose value is [5, 2, 3].

This is useful when validating the result of a broadcasting operation when the
tensors do not have statically known shapes.


	参数

	
	shape_x – A rank 1 integer Tensor, representing the shape of x.


	shape_y – A rank 1 integer Tensor, representing the shape of y.






	返回

	A rank 1 integer Tensor representing the broadcasted shape.










	
tensorflow.broadcast_static_shape(shape_x, shape_y)

	Computes the shape of a broadcast given known shapes.

When shape_x and shape_y are fully known TensorShapes this computes a
TensorShape which is the shape of the result of a broadcasting op applied in
tensors of shapes shape_x and shape_y.

For example, if shape_x is [1, 2, 3] and shape_y is [5, 1, 3], the result is a
TensorShape whose value is [5, 2, 3].

This is useful when validating the result of a broadcasting operation when the
tensors have statically known shapes.


	参数

	
	shape_x – A TensorShape


	shape_y – A TensorShape






	返回

	A TensorShape representing the broadcasted shape.



	Raises

	ValueError – If the two shapes can not be broadcasted.










	
tensorflow.broadcast_to(input, shape, name=None)

	Broadcast an array for a compatible shape.

Broadcasting is the process of making arrays to have compatible shapes
for arithmetic operations. Two shapes are compatible if for each
dimension pair they are either equal or one of them is one. When trying
to broadcast a Tensor to a shape, it starts with the trailing dimensions,
and works its way forward.

For example,

>>> x = tf.constant([1, 2, 3])
>>> y = tf.broadcast_to(x, [3, 3])
>>> print(y)
tf.Tensor(
    [[1 2 3]
     [1 2 3]
     [1 2 3]], shape=(3, 3), dtype=int32)





In the above example, the input Tensor with the shape of [1, 3]
is broadcasted to output Tensor with shape of [3, 3].


	参数

	
	input – A Tensor. A Tensor to broadcast.


	shape – A Tensor. Must be one of the following types: int32, int64.
An 1-D int Tensor. The shape of the desired output.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.case(pred_fn_pairs, default=None, exclusive=False, strict=False, name='case')

	Create a case operation.

See also tf.switch_case.

The pred_fn_pairs parameter is a list of pairs of size N.
Each pair contains a boolean scalar tensor and a python callable that
creates the tensors to be returned if the boolean evaluates to True.
default is a callable generating a list of tensors. All the callables
in pred_fn_pairs as well as default (if provided) should return the same
number and types of tensors.

If exclusive==True, all predicates are evaluated, and an exception is
thrown if more than one of the predicates evaluates to True.
If exclusive==False, execution stops at the first predicate which
evaluates to True, and the tensors generated by the corresponding function
are returned immediately. If none of the predicates evaluate to True, this
operation returns the tensors generated by default.

tf.case supports nested structures as implemented in
tf.contrib.framework.nest. All of the callables must return the same
(possibly nested) value structure of lists, tuples, and/or named tuples.
Singleton lists and tuples form the only exceptions to this: when returned by
a callable, they are implicitly unpacked to single values. This
behavior is disabled by passing strict=True.

@compatibility(v2)
pred_fn_pairs could be a dictionary in v1. However, tf.Tensor and
tf.Variable are no longer hashable in v2, so cannot be used as a key for a
dictionary.  Please use a list or a tuple instead.
@end_compatibility

Example 1:

Pseudocode:

`
if (x < y) return 17;
else return 23;
`

Expressions:

`python
f1 = lambda: tf.constant(17)
f2 = lambda: tf.constant(23)
r = tf.case([(tf.less(x, y), f1)], default=f2)
`

Example 2:

Pseudocode:

`
if (x < y && x > z) raise OpError("Only one predicate may evaluate to True");
if (x < y) return 17;
else if (x > z) return 23;
else return -1;
`

Expressions:

```python
def f1(): return tf.constant(17)
def f2(): return tf.constant(23)
def f3(): return tf.constant(-1)
r = tf.case([(tf.less(x, y), f1), (tf.greater(x, z), f2)],


default=f3, exclusive=True)




```


	参数

	
	pred_fn_pairs – List of pairs of a boolean scalar tensor and a callable which
returns a list of tensors.


	default – Optional callable that returns a list of tensors.


	exclusive – True iff at most one predicate is allowed to evaluate to True.


	strict – A boolean that enables/disables ‘strict’ mode; see above.


	name – A name for this operation (optional).






	返回

	The tensors returned by the first pair whose predicate evaluated to True, or
those returned by default if none does.



	Raises

	
	TypeError – If pred_fn_pairs is not a list/tuple.


	TypeError – If pred_fn_pairs is a list but does not contain 2-tuples.


	TypeError – If fns[i] is not callable for any i, or default is not
callable.













	
tensorflow.cast(x, dtype, name=None)

	Casts a tensor to a new type.

The operation casts x (in case of Tensor) or x.values
(in case of SparseTensor or IndexedSlices) to dtype.

For example:

>>> x = tf.constant([1.8, 2.2], dtype=tf.float32)
>>> tf.dtypes.cast(x, tf.int32)
<tf.Tensor: shape=(2,), dtype=int32, numpy=array([1, 2], dtype=int32)>





The operation supports data types (for x and dtype) of
uint8, uint16, uint32, uint64, int8, int16, int32, int64,
float16, float32, float64, complex64, complex128, bfloat16.
In case of casting from complex types (complex64, complex128) to real
types, only the real part of x is returned. In case of casting from real
types to complex types (complex64, complex128), the imaginary part of the
returned value is set to 0. The handling of complex types here matches the
behavior of numpy.


	参数

	
	x – A Tensor or SparseTensor or IndexedSlices of numeric type. It could
be uint8, uint16, uint32, uint64, int8, int16, int32,
int64, float16, float32, float64, complex64, complex128,
bfloat16.


	dtype – The destination type. The list of supported dtypes is the same as
x.


	name – A name for the operation (optional).






	返回

	
	A Tensor or SparseTensor or IndexedSlices with same shape as x and

	same type as dtype.









	Raises

	TypeError – If x cannot be cast to the dtype.










	
tensorflow.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None)

	Clips values of multiple tensors by the ratio of the sum of their norms.

Given a tuple or list of tensors t_list, and a clipping ratio clip_norm,
this operation returns a list of clipped tensors list_clipped
and the global norm (global_norm) of all tensors in t_list. Optionally,
if you’ve already computed the global norm for t_list, you can specify
the global norm with use_norm.

To perform the clipping, the values t_list[i] are set to:


t_list[i] * clip_norm / max(global_norm, clip_norm)




where:


global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))




If clip_norm > global_norm then the entries in t_list remain as they are,
otherwise they’re all shrunk by the global ratio.

If global_norm == infinity then the entries in t_list are all set to NaN
to signal that an error occurred.

Any of the entries of t_list that are of type None are ignored.

This is the correct way to perform gradient clipping (Pascanu et al., 2012).

However, it is slower than clip_by_norm() because all the parameters must be
ready before the clipping operation can be performed.


	参数

	
	t_list – A tuple or list of mixed Tensors, IndexedSlices, or None.


	clip_norm – A 0-D (scalar) Tensor > 0. The clipping ratio.


	use_norm – A 0-D (scalar) Tensor of type float (optional). The global
norm to use. If not provided, global_norm() is used to compute the norm.


	name – A name for the operation (optional).






	返回

	A list of Tensors of the same type as list_t.
global_norm: A 0-D (scalar) Tensor representing the global norm.



	返回类型

	list_clipped



	Raises

	TypeError – If t_list is not a sequence.





References


	On the difficulty of training Recurrent Neural Networks:

	[Pascanu et al., 2012](http://proceedings.mlr.press/v28/pascanu13.html)
([pdf](http://proceedings.mlr.press/v28/pascanu13.pdf))










	
tensorflow.clip_by_norm(t, clip_norm, axes=None, name=None)

	Clips tensor values to a maximum L2-norm.

Given a tensor t, and a maximum clip value clip_norm, this operation
normalizes t so that its L2-norm is less than or equal to clip_norm,
along the dimensions given in axes. Specifically, in the default case
where all dimensions are used for calculation, if the L2-norm of t is
already less than or equal to clip_norm, then t is not modified. If
the L2-norm is greater than clip_norm, then this operation returns a
tensor of the same type and shape as t with its values set to:

t * clip_norm / l2norm(t)

In this case, the L2-norm of the output tensor is clip_norm.

As another example, if t is a matrix and axes == [1], then each row
of the output will have L2-norm less than or equal to clip_norm. If
axes == [0] instead, each column of the output will be clipped.

This operation is typically used to clip gradients before applying them with
an optimizer.


	参数

	
	t – A Tensor or IndexedSlices.


	clip_norm – A 0-D (scalar) Tensor > 0. A maximum clipping value.


	axes – A 1-D (vector) Tensor of type int32 containing the dimensions
to use for computing the L2-norm. If None (the default), uses all
dimensions.


	name – A name for the operation (optional).






	返回

	A clipped Tensor or IndexedSlices.



	Raises

	
	ValueError – If the clip_norm tensor is not a 0-D scalar tensor.


	TypeError – If dtype of the input is not a floating point or
complex type.













	
tensorflow.clip_by_value(t, clip_value_min, clip_value_max, name=None)

	Clips tensor values to a specified min and max.

Given a tensor t, this operation returns a tensor of the same type and
shape as t with its values clipped to clip_value_min and clip_value_max.
Any values less than clip_value_min are set to clip_value_min. Any values
greater than clip_value_max are set to clip_value_max.

Note: clip_value_min needs to be smaller or equal to clip_value_max for
correct results.

For example:

Basic usage passes a scalar as the min and max value.

>>> t = tf.constant([[-10., -1., 0.], [0., 2., 10.]])
>>> t2 = tf.clip_by_value(t, clip_value_min=-1, clip_value_max=1)
>>> t2.numpy()
array([[-1., -1.,  0.],
       [ 0.,  1.,  1.]], dtype=float32)





The min and max can be the same size as t, or broadcastable to that size.

>>> t = tf.constant([[-1, 0., 10.], [-1, 0, 10]])
>>> clip_min = [[2],[1]]
>>> t3 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100)
>>> t3.numpy()
array([[ 2.,  2., 10.],
       [ 1.,  1., 10.]], dtype=float32)





Broadcasting fails, intentionally, if you would expand the dimensions of t

>>> t = tf.constant([[-1, 0., 10.], [-1, 0, 10]])
>>> clip_min = [[[2, 1]]] # Has a third axis
>>> t4 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100)
Traceback (most recent call last):
...
InvalidArgumentError: Incompatible shapes: [2,3] vs. [1,1,2]





It throws a TypeError if you try to clip an int to a float value
(tf.cast the input to float first).

>>> t = tf.constant([[1, 2], [3, 4]], dtype=tf.int32)
>>> t5 = tf.clip_by_value(t, clip_value_min=-3.1, clip_value_max=3.1)
Traceback (most recent call last):
...
TypeError: Cannot convert ...






	参数

	
	t – A Tensor or IndexedSlices.


	clip_value_min – The minimum value to clip to. A scalar Tensor or one that
is broadcastable to the shape of t.


	clip_value_max – The minimum value to clip to. A scalar Tensor or one that
is broadcastable to the shape of t.


	name – A name for the operation (optional).






	返回

	A clipped Tensor or IndexedSlices.



	Raises

	
	tf.errors.InvalidArgumentError – If the clip tensors would trigger array
broadcasting that would make the returned tensor larger than the input.


	TypeError – If dtype of the input is int32 and dtype of
the clip_value_min or clip_value_max is float32













	
tensorflow.complex(real, imag, name=None)

	Converts two real numbers to a complex number.

Given a tensor real representing the real part of a complex number, and a
tensor imag representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \(a + bj\), where
a represents the real part and b represents the imag part.

The input tensors real and imag must have the same shape.

For example:

`python
real = tf.constant([2.25, 3.25])
imag = tf.constant([4.75, 5.75])
tf.complex(real, imag)  # [[2.25 + 4.75j], [3.25 + 5.75j]]
`


	参数

	
	real – A Tensor. Must be one of the following types: float32, float64.


	imag – A Tensor. Must have the same type as real.


	name – A name for the operation (optional).






	返回

	A Tensor of type complex64 or complex128.



	Raises

	TypeError – Real and imag must be correct types










	
tensorflow.concat(values, axis, name='concat')

	Concatenates tensors along one dimension.

See also tf.tile, tf.stack, tf.repeat.

Concatenates the list of tensors values along dimension axis.  If
values[i].shape = [D0, D1, … Daxis(i), …Dn], the concatenated
result has shape


[D0, D1, … Raxis, …Dn]




where


Raxis = sum(Daxis(i))




That is, the data from the input tensors is joined along the axis
dimension.

The number of dimensions of the input tensors must match, and all dimensions
except axis must be equal.

For example:

>>> t1 = [[1, 2, 3], [4, 5, 6]]
>>> t2 = [[7, 8, 9], [10, 11, 12]]
>>> concat([t1, t2], 0)
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]], dtype=int32)>





>>> concat([t1, t2], 1)
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 10, 11, 12]], dtype=int32)>





As in Python, the axis could also be negative numbers. Negative axis
are interpreted as counting from the end of the rank, i.e.,


axis + rank(values)-th dimension.




For example:

>>> t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]]
>>> t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
>>> tf.concat([t1, t2], -1)
<tf.Tensor: shape=(2, 2, 4), dtype=int32, numpy=
  array([[[ 1,  2,  7,  4],
          [ 2,  3,  8,  4]],
         [[ 4,  4,  2, 10],
          [ 5,  3, 15, 11]]], dtype=int32)>





Note: If you are concatenating along a new axis consider using stack.
E.g.

`python
tf.concat([tf.expand_dims(t, axis) for t in tensors], axis)
`

can be rewritten as

`python
tf.stack(tensors, axis=axis)
`


	参数

	
	values – A list of Tensor objects or a single Tensor.


	axis – 0-D int32 Tensor.  Dimension along which to concatenate. Must be
in the range [-rank(values), rank(values)). As in Python, indexing for
axis is 0-based. Positive axis in the rage of [0, rank(values)) refers
to axis-th dimension. And negative axis refers to axis +
rank(values)-th dimension.


	name – A name for the operation (optional).






	返回

	A Tensor resulting from concatenation of the input tensors.










	
tensorflow.cond(pred, true_fn=None, false_fn=None, name=None)

	Return true_fn() if the predicate pred is true else false_fn().

true_fn and false_fn both return lists of output tensors. true_fn and
false_fn must have the same non-zero number and type of outputs.

WARNING: Any Tensors or Operations created outside of true_fn and
false_fn will be executed regardless of which branch is selected at runtime.

Although this behavior is consistent with the dataflow model of TensorFlow,
it has frequently surprised users who expected a lazier semantics.
Consider the following simple program:

`python
z = tf.multiply(a, b)
result = tf.cond(x < y, lambda: tf.add(x, z), lambda: tf.square(y))
`

If x < y, the tf.add operation will be executed and tf.square
operation will not be executed. Since z is needed for at least one
branch of the cond, the tf.multiply operation is always executed,
unconditionally.

Note that cond calls true_fn and false_fn exactly once (inside the
call to cond, and not at all during Session.run()). cond
stitches together the graph fragments created during the true_fn and
false_fn calls with some additional graph nodes to ensure that the right
branch gets executed depending on the value of pred.

tf.cond supports nested structures as implemented in
tensorflow.python.util.nest. Both true_fn and false_fn must return the
same (possibly nested) value structure of lists, tuples, and/or named tuples.
Singleton lists and tuples form the only exceptions to this: when returned by
true_fn and/or false_fn, they are implicitly unpacked to single values.

Note: It is illegal to “directly” use tensors created inside a cond branch
outside it, e.g. by storing a reference to a branch tensor in the python
state. If you need to use a tensor created in a branch function you should
return it as an output of the branch function and use the output from
tf.cond instead.


	参数

	
	pred – A scalar determining whether to return the result of true_fn or
false_fn.


	true_fn – The callable to be performed if pred is true.


	false_fn – The callable to be performed if pred is false.


	name – Optional name prefix for the returned tensors.






	返回

	Tensors returned by the call to either true_fn or false_fn. If the
callables return a singleton list, the element is extracted from the list.



	Raises

	
	TypeError – if true_fn or false_fn is not callable.


	ValueError – if true_fn and false_fn do not return the same number of
tensors, or return tensors of different types.








Example:

`python
x = tf.constant(2)
y = tf.constant(5)
def f1(): return tf.multiply(x, 17)
def f2(): return tf.add(y, 23)
r = tf.cond(tf.less(x, y), f1, f2)
# r is set to f1().
# Operations in f2 (e.g., tf.add) are not executed.
`






	
tensorflow.constant(value, dtype=None, shape=None, name='Const')

	Creates a constant tensor from a tensor-like object.

Note: All eager tf.Tensor values are immutable (in contrast to
tf.Variable). There is nothing especially _constant_ about the value
returned from tf.constant. This function it is not fundamentally different
from tf.convert_to_tensor. The name tf.constant comes from the symbolic
APIs (like tf.data or keras functional models) where the value is embeded
in a Const node in the tf.Graph. tf.constant is useful for asserting
that the value can be embedded that way.

If the argument dtype is not specified, then the type is inferred from
the type of value.

>>> # Constant 1-D Tensor from a python list.
>>> tf.constant([1, 2, 3, 4, 5, 6])
<tf.Tensor: shape=(6,), dtype=int32,
    numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
>>> # Or a numpy array
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> tf.constant(a)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
  array([[1, 2, 3],
         [4, 5, 6]])>





If dtype is specified the resulting tensor values are cast to the requested
dtype.

>>> tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
<tf.Tensor: shape=(6,), dtype=float64,
    numpy=array([1., 2., 3., 4., 5., 6.])>





If shape is set, the value is reshaped to match. Scalars are expanded to
fill the shape:

>>> tf.constant(0, shape=(2, 3))
  <tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[0, 0, 0],
         [0, 0, 0]], dtype=int32)>
>>> tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[1, 2, 3],
         [4, 5, 6]], dtype=int32)>





tf.constant has no effect if an eager Tensor is passed as the value, it
even transmits gradients:

>>> v = tf.Variable([0.0])
>>> with tf.GradientTape() as g:
...     loss = tf.constant(v + v)
>>> g.gradient(loss, v).numpy()
array([2.], dtype=float32)





But, since tf.constant embeds the value in the tf.Graph this fails for
symbolic tensors:

>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.constant(i)
Traceback (most recent call last):
...
NotImplementedError: ...





tf.constant will _always_ create CPU (host) tensors. In order to create
tensors on other devices, use tf.identity. (If the value is an eager
Tensor, however, the tensor will be returned unmodified as mentioned above.)

Related Ops:


	tf.convert_to_tensor is similar but:
* It has no shape argument.
* Symbolic tensors are allowed to pass through.

>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.convert_to_tensor(i)







	tf.fill: differs in a few ways:
*   tf.constant supports arbitrary constants, not just uniform scalar


Tensors like tf.fill.





	tf.fill creates an Op in the graph that is expanded at runtime, so it
can efficiently represent large tensors.


	Since tf.fill does not embed the value, it can produce dynamically
sized outputs.









	参数

	
	value – A constant value (or list) of output type dtype.


	dtype – The type of the elements of the resulting tensor.


	shape – Optional dimensions of resulting tensor.


	name – Optional name for the tensor.






	返回

	A Constant Tensor.



	Raises

	
	TypeError – if shape is incorrectly specified or unsupported.


	ValueError – if called on a symbolic tensor.













	
tensorflow.constant_initializer

	tensorflow.python.ops.init_ops_v2.Constant 的别名






	
tensorflow.control_dependencies(control_inputs)

	Wrapper for Graph.control_dependencies() using the default graph.

See tf.Graph.control_dependencies
for more details.

When eager execution is enabled, any callable object in the control_inputs
list will be called.


	参数

	control_inputs – A list of Operation or Tensor objects which must be
executed or computed before running the operations defined in the context.
Can also be None to clear the control dependencies. If eager execution
is enabled, any callable object in the control_inputs list will be
called.



	返回

	A context manager that specifies control dependencies for all
operations constructed within the context.










	
tensorflow.convert_to_tensor(value, dtype=None, dtype_hint=None, name=None)

	Converts the given value to a Tensor.

This function converts Python objects of various types to Tensor
objects. It accepts Tensor objects, numpy arrays, Python lists,
and Python scalars. For example:

>>> def my_func(arg):
...   arg = tf.convert_to_tensor(arg, dtype=tf.float32)
...   return arg





>>> # The following calls are equivalent.
>>> value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))
>>> print(value_1)
tf.Tensor(
  [[1. 2.]
   [3. 4.]], shape=(2, 2), dtype=float32)
>>> value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])
>>> print(value_2)
tf.Tensor(
  [[1. 2.]
   [3. 4.]], shape=(2, 2), dtype=float32)
>>> value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))
>>> print(value_3)
tf.Tensor(
  [[1. 2.]
   [3. 4.]], shape=(2, 2), dtype=float32)





This function can be useful when composing a new operation in Python
(such as my_func in the example above). All standard Python op
constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,
and scalars in addition to Tensor objects.


	Note: This function diverges from default Numpy behavior for float and

	string types when None is present in a Python list or scalar. Rather
than silently converting None values, an error will be thrown.






	参数

	
	value – An object whose type has a registered Tensor conversion function.


	dtype – Optional element type for the returned tensor. If missing, the type
is inferred from the type of value.


	dtype_hint – Optional element type for the returned tensor, used when dtype
is None. In some cases, a caller may not have a dtype in mind when
converting to a tensor, so dtype_hint can be used as a soft preference.
If the conversion to dtype_hint is not possible, this argument has no
effect.


	name – Optional name to use if a new Tensor is created.






	返回

	A Tensor based on value.



	Raises

	
	TypeError – If no conversion function is registered for value to dtype.


	RuntimeError – If a registered conversion function returns an invalid value.


	ValueError – If the value is a tensor not of given dtype in graph mode.













	
tensorflow.cos(x, name=None)

	Computes cos of x element-wise.


Given an input tensor, this function computes cosine of every
element in the tensor. Input range is (-inf, inf) and
output range is [-1,1]. If input lies outside the boundary, nan
is returned.

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.cos(x) ==> [nan -0.91113025 0.87758255 0.5403023 0.36235774 0.48718765 -0.95215535 nan]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.cosh(x, name=None)

	Computes hyperbolic cosine of x element-wise.


Given an input tensor, this function computes hyperbolic cosine of every
element in the tensor. Input range is [-inf, inf] and output range
is [1, inf].

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 2, 10, float("inf")])
tf.math.cosh(x) ==> [inf 4.0515420e+03 1.1276259e+00 1.5430807e+00 1.8106556e+00 3.7621956e+00 1.1013233e+04 inf]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.cumsum(x, axis=0, exclusive=False, reverse=False, name=None)

	Compute the cumulative sum of the tensor x along axis.

By default, this op performs an inclusive cumsum, which means that the first
element of the input is identical to the first element of the output:
For example:

>>> # tf.cumsum([a, b, c])   # [a, a + b, a + b + c]
>>> x = tf.constant([2, 4, 6, 8])
>>> tf.cumsum(x)
<tf.Tensor: shape=(4,), dtype=int32,
numpy=array([ 2,  6, 12, 20], dtype=int32)>





>>> # using varying `axis` values
>>> y = tf.constant([[2, 4, 6, 8], [1,3,5,7]])
>>> tf.cumsum(y, axis=0)
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
array([[ 2,  4,  6,  8],
       [ 3,  7, 11, 15]], dtype=int32)>
>>> tf.cumsum(y, axis=1)
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
array([[ 2,  6, 12, 20],
       [ 1,  4,  9, 16]], dtype=int32)>





By setting the exclusive kwarg to True, an exclusive cumsum is performed
instead:

>>> # tf.cumsum([a, b, c], exclusive=True)  => [0, a, a + b]
>>> x = tf.constant([2, 4, 6, 8])
>>> tf.cumsum(x, exclusive=True)
<tf.Tensor: shape=(4,), dtype=int32,
numpy=array([ 0,  2,  6, 12], dtype=int32)>





By setting the reverse kwarg to True, the cumsum is performed in the
opposite direction:

>>> # tf.cumsum([a, b, c], reverse=True)  # [a + b + c, b + c, c]
>>> x = tf.constant([2, 4, 6, 8])
>>> tf.cumsum(x, reverse=True)
<tf.Tensor: shape=(4,), dtype=int32,
numpy=array([20, 18, 14,  8], dtype=int32)>





This is more efficient than using separate tf.reverse ops.
The reverse and exclusive kwargs can also be combined:

>>> # tf.cumsum([a, b, c], exclusive=True, reverse=True)  # [b + c, c, 0]
>>> x = tf.constant([2, 4, 6, 8])
>>> tf.cumsum(x, exclusive=True, reverse=True)
<tf.Tensor: shape=(4,), dtype=int32,
numpy=array([18, 14,  8,  0], dtype=int32)>






	参数

	
	x – A Tensor. Must be one of the following types: float32, float64,
int64, int32, uint8, uint16, int16, int8, complex64,
complex128, qint8, quint8, qint32, half.


	axis – A Tensor of type int32 (default: 0). Must be in the range
[-rank(x), rank(x)).


	exclusive – If True, perform exclusive cumsum.


	reverse – A bool (default: False).


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.custom_gradient(f=None)

	Decorator to define a function with a custom gradient.

This decorator allows fine grained control over the gradients of a sequence
for operations.  This may be useful for multiple reasons, including providing
a more efficient or numerically stable gradient for a sequence of operations.

For example, consider the following function that commonly occurs in the
computation of cross entropy and log likelihoods:

```python
def log1pexp(x):


return tf.math.log(1 + tf.exp(x))




```

Due to numerical instability, the gradient of this function evaluated at x=100
is NaN.  For example:

`python
x = tf.constant(100.)
y = log1pexp(x)
dy = tf.gradients(y, x) # Will be NaN when evaluated.
`

The gradient expression can be analytically simplified to provide numerical
stability:

```python
@tf.custom_gradient
def log1pexp(x):


e = tf.exp(x)
def grad(dy):


return dy * (1 - 1 / (1 + e))




return tf.math.log(1 + e), grad




```

With this definition, the gradient at x=100 will be correctly evaluated as
1.0.

Nesting custom gradients can lead to unintuitive results. The default
behavior does not correspond to n-th order derivatives. For example

```python
@tf.custom_gradient
def op(x):


y = op1(x)
@tf.custom_gradient
def grad_fn(dy):


gdy = op2(x, y, dy)
def grad_grad_fn(ddy):  # Not the 2nd order gradient of op w.r.t. x.


return op3(x, y, dy, ddy)




return gdy, grad_grad_fn




return y, grad_fn




```

The function grad_grad_fn will be calculating the first order gradient
of grad_fn with respect to dy, which is used to generate forward-mode
gradient graphs from backward-mode gradient graphs, but is not the same as
the second order gradient of op with respect to x.

Instead, wrap nested @tf.custom_gradients in another function:

```python
@tf.custom_gradient
def op_with_fused_backprop(x):


y, x_grad = fused_op(x)
def first_order_gradient(dy):


@tf.custom_gradient
def first_order_custom(unused_x):



	def second_order_and_transpose(ddy):

	return second_order_for_x(…), gradient_wrt_dy(…)





return x_grad, second_order_and_transpose




return dy * first_order_custom(x)




return y, first_order_gradient




```

Additional arguments to the inner @tf.custom_gradient-decorated function
control the expected return values of the innermost function.

See also tf.RegisterGradient which registers a gradient function for a
primitive TensorFlow operation. tf.custom_gradient on the other hand allows
for fine grained control over the gradient computation of a sequence of
operations.

Note that if the decorated function uses `Variable`s, the enclosing variable
scope must be using `ResourceVariable`s.


	参数

	f – function f(*x) that returns a tuple (y, grad_fn) where:
- x is a sequence of Tensor inputs to the function.
- y is a Tensor or sequence of Tensor outputs of applying


TensorFlow operations in f to x.





	grad_fn is a function with the signature g(*grad_ys) which returns
a list of Tensor`s - the derivatives of `Tensor`s in `y with respect
to the Tensor`s in `x.  grad_ys is a Tensor or sequence of
Tensor`s the same size as `y holding the initial value gradients for
each Tensor in y. In a pure mathematical sense, a vector-argument
vector-valued function f’s derivatives should be its Jacobian matrix
J. Here we are expressing the Jacobian J as a function grad_fn
which defines how J will transform a vector grad_ys when
left-multiplied with it (grad_ys * J). This functional representation
of a matrix is convenient to use for chain-rule calculation
(in e.g. the back-propagation algorithm).

If f uses Variable`s (that are not part of the
inputs), i.e. through `get_variable, then grad_fn should have
signature g(*grad_ys, variables=None), where variables is a list of
the Variable`s, and return a 2-tuple `(grad_xs, grad_vars), where
grad_xs is the same as above, and grad_vars is a list<Tensor>
with the derivatives of Tensor`s in `y with respect to the variables
(that is, grad_vars has one Tensor per variable in variables).









	返回

	A function h(x) which returns the same value as f(x)[0] and whose
gradient (as calculated by tf.gradients) is determined by f(x)[1].










	
tensorflow.device(device_name)

	Specifies the device for ops created/executed in this context.

This function specifies the device to be used for ops created/executed in a
particular context. Nested contexts will inherit and also create/execute
their ops on the specified device. If a specific device is not required,
consider not using this function so that a device can be automatically
assigned.  In general the use of this function is optional. device_name can
be fully specified, as in “/job:worker/task:1/device:cpu:0”, or partially
specified, containing only a subset of the “/”-separated fields. Any fields
which are specified will override device annotations from outer scopes.

For example:

```python
with tf.device(‘/job:foo’):


# ops created here have devices with /job:foo
with tf.device(‘/job:bar/task:0/device:gpu:2’):


# ops created here have the fully specified device above





	with tf.device(‘/device:gpu:1’):

	# ops created here have the device ‘/job:foo/device:gpu:1’








```


	参数

	device_name – The device name to use in the context.



	返回

	A context manager that specifies the default device to use for newly
created ops.



	Raises

	RuntimeError – If a function is passed in.










	
tensorflow.divide(x, y, name=None)

	Computes Python style division of x by y.

For example:

>>> x = tf.constant([16, 12, 11])
>>> y = tf.constant([4, 6, 2])
>>> tf.divide(x,y)
<tf.Tensor: shape=(3,), dtype=float64,
numpy=array([4. , 2. , 5.5])>






	参数

	
	x – A Tensor


	y – A Tensor


	name – A name for the operation (optional).






	返回

	A Tensor with same shape as input










	
tensorflow.dynamic_partition(data, partitions, num_partitions, name=None)

	Partitions data into num_partitions tensors using indices from partitions.

For each index tuple js of size partitions.ndim, the slice data[js, …]
becomes part of outputs[partitions[js]].  The slices with partitions[js] = i
are placed in outputs[i] in lexicographic order of js, and the first
dimension of outputs[i] is the number of entries in partitions equal to i.
In detail,


	```python

	outputs[i].shape = [sum(partitions == i)] + data.shape[partitions.ndim:]

outputs[i] = pack([data[js, …] for js if partitions[js] == i])





```

data.shape must start with partitions.shape.

For example:


	```python

	# Scalar partitions.
partitions = 1
num_partitions = 2
data = [10, 20]
outputs[0] = []  # Empty with shape [0, 2]
outputs[1] = [[10, 20]]

# Vector partitions.
partitions = [0, 0, 1, 1, 0]
num_partitions = 2
data = [10, 20, 30, 40, 50]
outputs[0] = [10, 20, 50]
outputs[1] = [30, 40]





```

See dynamic_stitch for an example on how to merge partitions back.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/DynamicPartition.png” alt>
</div>


	参数

	
	data – A Tensor.


	partitions – A Tensor of type int32.
Any shape.  Indices in the range [0, num_partitions).


	num_partitions – An int that is >= 1.
The number of partitions to output.


	name – A name for the operation (optional).






	返回

	A list of num_partitions Tensor objects with the same type as data.










	
tensorflow.dynamic_stitch(indices, data, name=None)

	Interleave the values from the data tensors into a single tensor.

Builds a merged tensor such that


	```python

	merged[indices[m][i, …, j], …] = data[m][i, …, j, …]





```

For example, if each indices[m] is scalar or vector, we have


	```python

	# Scalar indices:
merged[indices[m], …] = data[m][…]

# Vector indices:
merged[indices[m][i], …] = data[m][i, …]





```

Each data[i].shape must start with the corresponding indices[i].shape,
and the rest of data[i].shape must be constant w.r.t. i.  That is, we
must have data[i].shape = indices[i].shape + constant.  In terms of this
constant, the output shape is


merged.shape = [max(indices)] + constant




Values are merged in order, so if an index appears in both indices[m][i] and
indices[n][j] for (m,i) < (n,j) the slice data[n][j] will appear in the
merged result. If you do not need this guarantee, ParallelDynamicStitch might
perform better on some devices.

For example:


	```python

	indices[0] = 6
indices[1] = [4, 1]
indices[2] = [[5, 2], [0, 3]]
data[0] = [61, 62]
data[1] = [[41, 42], [11, 12]]
data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]]
merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42],


[51, 52], [61, 62]]








```

This method can be used to merge partitions created by dynamic_partition
as illustrated on the following example:


	```python

	# Apply function (increments x_i) on elements for which a certain condition
# apply (x_i != -1 in this example).
x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4])
condition_mask=tf.not_equal(x,tf.constant(-1.))
partitioned_data = tf.dynamic_partition(


x, tf.cast(condition_mask, tf.int32) , 2)




partitioned_data[1] = partitioned_data[1] + 1.0
condition_indices = tf.dynamic_partition(


tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2)




x = tf.dynamic_stitch(condition_indices, partitioned_data)
# Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain
# unchanged.





```

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
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	参数

	
	indices – A list of at least 1 Tensor objects with type int32.


	data – A list with the same length as indices of Tensor objects with the same type.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as data.










	
tensorflow.edit_distance(hypothesis, truth, normalize=True, name='edit_distance')

	Computes the Levenshtein distance between sequences.

This operation takes variable-length sequences (hypothesis and truth),
each provided as a SparseTensor, and computes the Levenshtein distance.
You can normalize the edit distance by length of truth by setting
normalize to true.

For example, given the following input:

``python
# ‘hypothesis’ is a tensor of shape `[2, 1] with variable-length values:
#   (0,0) = [“a”]
#   (1,0) = [“b”]
hypothesis = tf.SparseTensor(



	[[0, 0, 0],

	[1, 0, 0]],





[“a”, “b”],
(2, 1, 1))




# ‘truth’ is a tensor of shape [2, 2] with variable-length values:
#   (0,0) = []
#   (0,1) = [“a”]
#   (1,0) = [“b”, “c”]
#   (1,1) = [“a”]
truth = tf.SparseTensor(



	[[0, 1, 0],

	[1, 0, 0],
[1, 0, 1],
[1, 1, 0]],





[“a”, “b”, “c”, “a”],
(2, 2, 2))




normalize = True
```

This operation would return the following:

``python
# ‘output’ is a tensor of shape `[2, 2] with edit distances normalized
# by ‘truth’ lengths.
output ==> [[inf, 1.0],  # (0,0): no truth, (0,1): no hypothesis


[0.5, 1.0]]  # (1,0): addition, (1,1): no hypothesis




```


	参数

	
	hypothesis – A SparseTensor containing hypothesis sequences.


	truth – A SparseTensor containing truth sequences.


	normalize – A bool. If True, normalizes the Levenshtein distance by
length of truth.


	name – A name for the operation (optional).






	返回

	A dense Tensor with rank R - 1, where R is the rank of the
SparseTensor inputs hypothesis and truth.



	Raises

	TypeError – If either hypothesis or truth are not a SparseTensor.










	
tensorflow.eig(tensor, name=None)

	Computes the eigen decomposition of a batch of matrices.

The eigenvalues
and eigenvectors for a non-Hermitian matrix in general are complex. The
eigenvectors are not guaranteed to be linearly independent.

Computes the eigenvalues and right eigenvectors of the innermost
N-by-N matrices in tensor such that
tensor[…,:,:] * v[…, :,i] = e[…, i] * v[…,:,i], for i=0…N-1.


	参数

	
	tensor – Tensor of shape […, N, N]. Only the lower triangular part of
each inner inner matrix is referenced.


	name – string, optional name of the operation.






	返回

	Eigenvalues. Shape is […, N]. Sorted in non-decreasing order.
v: Eigenvectors. Shape is […, N, N]. The columns of the inner most


matrices contain eigenvectors of the corresponding matrices in tensor








	返回类型

	e










	
tensorflow.eigvals(tensor, name=None)

	Computes the eigenvalues of one or more matrices.

Note: If your program backpropagates through this function, you should replace
it with a call to tf.linalg.eig (possibly ignoring the second output) to
avoid computing the eigen decomposition twice. This is because the
eigenvectors are used to compute the gradient w.r.t. the eigenvalues. See
_SelfAdjointEigV2Grad in linalg_grad.py.


	参数

	
	tensor – Tensor of shape […, N, N].


	name – string, optional name of the operation.






	返回

	
	Eigenvalues. Shape is […, N]. The vector e[…, :] contains the N

	eigenvalues of tensor[…, :, :].









	返回类型

	e










	
tensorflow.einsum(equation, *inputs, **kwargs)

	Tensor contraction over specified indices and outer product.

Einsum allows defining Tensors by defining their element-wise computation.
This computation is defined by equation, a shorthand form based on Einstein
summation. As an example, consider multiplying two matrices A and B to form a
matrix C.  The elements of C are given by:


	```

	C[i,k] = sum_j A[i,j] * B[j,k]





```

The corresponding equation is:


	```

	ij,jk->ik





```

In general, to convert the element-wise equation into the equation string,
use the following procedure (intermediate strings for matrix multiplication
example provided in parentheses):


	remove variable names, brackets, and commas, (ik = sum_j ij * jk)


	replace “*” with “,”, (ik = sum_j ij , jk)


	drop summation signs, and (ik = ij, jk)


	move the output to the right, while replacing “=” with “->”. (ij,jk->ik)




Many common operations can be expressed in this way.  For example:

```python
# Matrix multiplication
einsum(‘ij,jk->ik’, m0, m1)  # output[i,k] = sum_j m0[i,j] * m1[j, k]

# Dot product
einsum(‘i,i->’, u, v)  # output = sum_i u[i]*v[i]

# Outer product
einsum(‘i,j->ij’, u, v)  # output[i,j] = u[i]*v[j]

# Transpose
einsum(‘ij->ji’, m)  # output[j,i] = m[i,j]

# Trace
einsum(‘ii’, m)  # output[j,i] = trace(m) = sum_i m[i, i]

# Batch matrix multiplication
einsum(‘aij,ajk->aik’, s, t)  # out[a,i,k] = sum_j s[a,i,j] * t[a, j, k]
```

To enable and control broadcasting, use an ellipsis.  For example, to perform
batch matrix multiplication with NumPy-style broadcasting across the batch
dimensions, use:

`python
einsum('...ij,...jk->...ik', u, v)
`


	参数

	
	equation – a str describing the contraction, in the same format as
numpy.einsum.


	*inputs – the inputs to contract (each one a Tensor), whose shapes should
be consistent with equation.


	**kwargs – 
	optimize: Optimization strategy to use to find contraction path using
opt_einsum. Must be ‘greedy’, ‘optimal’, ‘branch-2’, ‘branch-all’ or


’auto’. (optional, default: ‘greedy’).






	name: A name for the operation (optional).











	返回

	The contracted Tensor, with shape determined by equation.



	Raises

	ValueError – If
- the format of equation is incorrect,
- number of inputs or their shapes are inconsistent with equation.










	
tensorflow.ensure_shape(x, shape, name=None)

	Updates the shape of a tensor and checks at runtime that the shape holds.

For example:
```python
x = tf.compat.v1.placeholder(tf.int32)
print(x.shape)
==> TensorShape(None)
y = x * 2
print(y.shape)
==> TensorShape(None)

y = tf.ensure_shape(y, (None, 3, 3))
print(y.shape)
==> TensorShape([Dimension(None), Dimension(3), Dimension(3)])


	with tf.compat.v1.Session() as sess:

	# Raises tf.errors.InvalidArgumentError, because the shape (3,) is not
# compatible with the shape (None, 3, 3)
sess.run(y, feed_dict={x: [1, 2, 3]})





```

NOTE: This differs from Tensor.set_shape in that it sets the static shape
of the resulting tensor and enforces it at runtime, raising an error if the
tensor’s runtime shape is incompatible with the specified shape.
Tensor.set_shape sets the static shape of the tensor without enforcing it
at runtime, which may result in inconsistencies between the statically-known
shape of tensors and the runtime value of tensors.


	参数

	
	x – A Tensor.


	shape – A TensorShape representing the shape of this tensor, a
TensorShapeProto, a list, a tuple, or None.


	name – A name for this operation (optional). Defaults to “EnsureShape”.






	返回

	A Tensor. Has the same type and contents as x. At runtime, raises a
tf.errors.InvalidArgumentError if shape is incompatible with the shape
of x.










	
tensorflow.equal(x, y, name=None)

	Returns the truth value of (x == y) element-wise.

Performs a [broadcast](
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) with the
arguments and then an element-wise equality comparison, returning a Tensor of
boolean values.

For example:

>>> x = tf.constant([2, 4])
>>> y = tf.constant(2)
>>> tf.math.equal(x, y)
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([ True,  False])>





>>> x = tf.constant([2, 4])
>>> y = tf.constant([2, 4])
>>> tf.math.equal(x, y)
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([ True,  True])>






	参数

	
	x – A tf.Tensor or tf.SparseTensor or tf.IndexedSlices.


	y – A tf.Tensor or tf.SparseTensor or tf.IndexedSlices.


	name – A name for the operation (optional).






	返回

	A tf.Tensor of type bool with the same size as that of x or y.



	Raises

	tf.errors.InvalidArgumentError – If shapes of arguments are incompatible










	
tensorflow.executing_eagerly()

	Checks whether the current thread has eager execution enabled.

Eager execution is enabled by default and this API returns True
in most of cases. However, this API might return False in the following use
cases.


	Executing inside tf.function, unless under tf.init_scope or
tf.config.experimental_run_functions_eagerly(True) is previously called.


	Executing inside a transformation function for tf.dataset.


	tf.compat.v1.disable_eager_execution() is called.




General case:

>>> print(tf.executing_eagerly())
True





Inside tf.function:

>>> @tf.function
... def fn():
...   with tf.init_scope():
...     print(tf.executing_eagerly())
...   print(tf.executing_eagerly())
>>> fn()
True
False





Inside tf.function after

tf.config.experimental_run_functions_eagerly(True) is called:
>>> tf.config.experimental_run_functions_eagerly(True)
>>> @tf.function
… def fn():
…   with tf.init_scope():
…     print(tf.executing_eagerly())
…   print(tf.executing_eagerly())
>>> fn()
True
True
>>> tf.config.experimental_run_functions_eagerly(False)

Inside a transformation function for tf.dataset:

>>> def data_fn(x):
...   print(tf.executing_eagerly())
...   return x
>>> dataset = tf.data.Dataset.range(100)
>>> dataset = dataset.map(data_fn)
False






	返回

	True if the current thread has eager execution enabled.










	
tensorflow.exp(x, name=None)

	Computes exponential of x element-wise.  \(y = e^x\).

This function computes the exponential of the input tensor element-wise.
i.e. math.exp(x) or \(e^x\), where x is the input tensor.
\(e\) denotes Euler’s number and is approximately equal to 2.718281.
Output is positive for any real input.

>>> x = tf.constant(2.0)
>>> tf.math.exp(x)
<tf.Tensor: shape=(), dtype=float32, numpy=7.389056>





>>> x = tf.constant([2.0, 8.0])
>>> tf.math.exp(x)
<tf.Tensor: shape=(2,), dtype=float32,
numpy=array([   7.389056, 2980.958   ], dtype=float32)>





For complex numbers, the exponential value is calculated as
\(e^{x+iy}={e^x}{e^{iy}}={e^x}{\cos(y)+i\sin(y)}\)

For 1+1j the value would be computed as:
\(e^1{\cos(1)+i\sin(1)} = 2.7182817 \times (0.5403023+0.84147096j)\)

>>> x = tf.constant(1 + 1j)
>>> tf.math.exp(x)
<tf.Tensor: shape=(), dtype=complex128,
numpy=(1.4686939399158851+2.2873552871788423j)>






	参数

	
	x – A tf.Tensor. Must be one of the following types: bfloat16, half,
float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A tf.Tensor. Has the same type as x.





@compatibility(numpy)
Equivalent to np.exp
@end_compatibility






	
tensorflow.expand_dims(input, axis, name=None)

	Returns a tensor with an additional dimension inserted at index axis.

Given a tensor input, this operation inserts a dimension of size 1 at the
dimension index axis of input’s shape. The dimension index axis starts
at zero; if you specify a negative number for axis it is counted backward
from the end.

This operation is useful if you want to add a batch dimension to a single
element. For example, if you have a single image of shape [height, width,
channels], you can make it a batch of one image with expand_dims(image, 0),
which will make the shape [1, height, width, channels].

Examples:

>>> t = [[1, 2, 3],[4, 5, 6]] # shape [2, 3]





>>> tf.expand_dims(t, 0)
<tf.Tensor: shape=(1, 2, 3), dtype=int32, numpy=
array([[[1, 2, 3],
        [4, 5, 6]]], dtype=int32)>





>>> tf.expand_dims(t, 1)
<tf.Tensor: shape=(2, 1, 3), dtype=int32, numpy=
array([[[1, 2, 3]],
       [[4, 5, 6]]], dtype=int32)>





>>> tf.expand_dims(t, 2)
<tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy=
array([[[1],
        [2],
        [3]],
       [[4],
        [5],
        [6]]], dtype=int32)>





>>> tf.expand_dims(t, -1) # Last dimension index. In this case, same as 2.
<tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy=
array([[[1],
        [2],
        [3]],
       [[4],
        [5],
        [6]]], dtype=int32)>





This operation is related to:


	tf.squeeze, which removes dimensions of size 1.


	tf.reshape, which provides more flexible reshaping capability





	参数

	
	input – A Tensor.


	axis – Integer specifying the dimension index at which to expand the
shape of input. Given an input of D dimensions, axis must be in range
[-(D+1), D] (inclusive).


	name – Optional string. The name of the output Tensor.






	返回

	A tensor with the same data as input, with an additional dimension
inserted at the index specified by axis.



	Raises

	
	ValueError – If axis is not specified.


	InvalidArgumentError – If axis is out of range [-(D+1), D].













	
tensorflow.extract_volume_patches(input, ksizes, strides, padding, name=None)

	Extract patches from input and put them in the “depth” output dimension. 3D extension of extract_image_patches.


	参数

	
	input – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
5-D Tensor with shape [batch, in_planes, in_rows, in_cols, depth].


	ksizes – A list of ints that has length >= 5.
The size of the sliding window for each dimension of input.


	strides – A list of ints that has length >= 5.
1-D of length 5. How far the centers of two consecutive patches are in
input. Must be: [1, stride_planes, stride_rows, stride_cols, 1].


	padding – A string from: “SAME”, “VALID”.
The type of padding algorithm to use.

We specify the size-related attributes as:


	```python

	ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1]
strides = [1, stride_planes, strides_rows, strides_cols, 1]





```




	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.eye(num_rows, num_columns=None, batch_shape=None, dtype=tf.float32, name=None)

	Construct an identity matrix, or a batch of matrices.

```python
# Construct one identity matrix.
tf.eye(2)
==> [[1., 0.],


[0., 1.]]




# Construct a batch of 3 identity matrices, each 2 x 2.
# batch_identity[i, :, :] is a 2 x 2 identity matrix, i = 0, 1, 2.
batch_identity = tf.eye(2, batch_shape=[3])

# Construct one 2 x 3 “identity” matrix
tf.eye(2, num_columns=3)
==> [[ 1.,  0.,  0.],


[ 0.,  1.,  0.]]




```


	参数

	
	num_rows – Non-negative int32 scalar Tensor giving the number of rows
in each batch matrix.


	num_columns – Optional non-negative int32 scalar Tensor giving the number
of columns in each batch matrix.  Defaults to num_rows.


	batch_shape – A list or tuple of Python integers or a 1-D int32 Tensor.
If provided, the returned Tensor will have leading batch dimensions of
this shape.


	dtype – The type of an element in the resulting Tensor


	name – A name for this Op.  Defaults to “eye”.






	返回

	A Tensor of shape batch_shape + [num_rows, num_columns]










	
tensorflow.fill(dims, value, name=None)

	Creates a tensor filled with a scalar value.

This operation creates a tensor of shape dims and fills it with value.

For example:

>>> tf.fill([2, 3], 9)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[9, 9, 9],
       [9, 9, 9]], dtype=int32)>





tf.fill evaluates at graph runtime and supports dynamic shapes based on
other runtime tf.Tensors, unlike tf.constant(value, shape=dims), which
embeds the value as a Const node.


	参数

	
	dims – A 1-D sequence of non-negative numbers. Represents the shape of the
output tf.Tensor. Entries should be of type: int32, int64.


	value – A value to fill the returned tf.Tensor.


	name – Optional string. The name of the output tf.Tensor.






	返回

	A tf.Tensor with shape dims and the same dtype as value.



	Raises

	
	InvalidArgumentError – dims contains negative entries.


	NotFoundError – dims contains non-integer entries.








@compatibility(numpy)
Similar to np.full. In numpy, more parameters are supported. Passing a
number argument as the shape (np.full(5, value)) is valid in numpy for
specifying a 1-D shaped result, while TensorFlow does not support this syntax.
@end_compatibility






	
tensorflow.fingerprint(data, method='farmhash64', name=None)

	Generates fingerprint values.

Generates fingerprint values of data.

Fingerprint op considers the first dimension of data as the batch dimension,
and output[i] contains the fingerprint value generated from contents in
data[i, …] for all i.

Fingerprint op writes fingerprint values as byte arrays. For example, the
default method farmhash64 generates a 64-bit fingerprint value at a time.
This 8-byte value is written out as an tf.uint8 array of size 8, in
little-endian order.

For example, suppose that data has data type tf.int32 and shape (2, 3, 4),
and that the fingerprint method is farmhash64. In this case, the output
shape is (2, 8), where 2 is the batch dimension size of data, and 8 is the
size of each fingerprint value in bytes. output[0, :] is generated from
12 integers in data[0, :, :] and similarly output[1, :] is generated from
other 12 integers in data[1, :, :].

Note that this op fingerprints the raw underlying buffer, and it does not
fingerprint Tensor’s metadata such as data type and/or shape. For example, the
fingerprint values are invariant under reshapes and bitcasts as long as the
batch dimension remain the same:

`python
tf.fingerprint(data) == tf.fingerprint(tf.reshape(data, ...))
tf.fingerprint(data) == tf.fingerprint(tf.bitcast(data, ...))
`

For string data, one should expect tf.fingerprint(data) !=
tf.fingerprint(tf.string.reduce_join(data)) in general.


	参数

	
	data – A Tensor. Must have rank 1 or higher.


	method – A Tensor of type tf.string. Fingerprint method used by this op.
Currently available method is farmhash64.


	name – A name for the operation (optional).






	返回

	A two-dimensional Tensor of type tf.uint8. The first dimension equals to
data’s first dimension, and the second dimension size depends on the
fingerprint algorithm.










	
tensorflow.floor(x, name=None)

	Returns element-wise largest integer not greater than x.


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.foldl(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None)

	foldl on the list of tensors unpacked from elems on dimension 0. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.foldl(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.foldl(fn, elems))

This foldl operator repeatedly applies the callable fn to a sequence
of elements from first to last. The elements are made of the tensors
unpacked from elems on dimension 0. The callable fn takes two tensors as
arguments. The first argument is the accumulated value computed from the
preceding invocation of fn, and the second is the value at the current
position of elems. If initializer is None, elems must contain at least
one element, and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is fn(initializer, values[0]).shape`.

This method also allows multi-arity elems and output of fn.  If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension.  The signature of fn may
match the structure of elems.  That is, if elems is
(t1, [t2, t3, [t4, t5]]), then an appropriate signature for fn is:
fn = lambda (t1, [t2, t3, [t4, t5]]):.


	参数

	
	fn – The callable to be performed.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension.  The nested sequence of the
resulting slices will be the first argument to fn.


	initializer – (optional) A tensor or (possibly nested) sequence of tensors,
as the initial value for the accumulator.


	parallel_iterations – (optional) The number of iterations allowed to run in
parallel.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – (optional) True enables GPU-CPU memory swapping.


	name – (optional) Name prefix for the returned tensors.






	返回

	A tensor or (possibly nested) sequence of tensors, resulting from applying
fn consecutively to the list of tensors unpacked from elems, from first
to last.



	Raises

	TypeError – if fn is not callable.





Example

`python
elems = tf.constant([1, 2, 3, 4, 5, 6])
sum = foldl(lambda a, x: a + x, elems)
# sum == 21
`






	
tensorflow.foldr(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None)

	foldr on the list of tensors unpacked from elems on dimension 0. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.foldr(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.foldr(fn, elems))

This foldr operator repeatedly applies the callable fn to a sequence
of elements from last to first. The elements are made of the tensors
unpacked from elems. The callable fn takes two tensors as arguments.
The first argument is the accumulated value computed from the preceding
invocation of fn, and the second is the value at the current position of
elems. If initializer is None, elems must contain at least one element,
and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is fn(initializer, values[0]).shape.

This method also allows multi-arity elems and output of fn.  If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension.  The signature of fn may
match the structure of elems.  That is, if elems is
(t1, [t2, t3, [t4, t5]]), then an appropriate signature for fn is:
fn = lambda (t1, [t2, t3, [t4, t5]]):.


	参数

	
	fn – The callable to be performed.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension.  The nested sequence of the
resulting slices will be the first argument to fn.


	initializer – (optional) A tensor or (possibly nested) sequence of tensors,
as the initial value for the accumulator.


	parallel_iterations – (optional) The number of iterations allowed to run in
parallel.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – (optional) True enables GPU-CPU memory swapping.


	name – (optional) Name prefix for the returned tensors.






	返回

	A tensor or (possibly nested) sequence of tensors, resulting from applying
fn consecutively to the list of tensors unpacked from elems, from last
to first.



	Raises

	TypeError – if fn is not callable.





Example

`python
elems = [1, 2, 3, 4, 5, 6]
sum = foldr(lambda a, x: a + x, elems)
# sum == 21
`






	
tensorflow.function(func=None, input_signature=None, autograph=True, experimental_implements=None, experimental_autograph_options=None, experimental_relax_shapes=False, experimental_compile=None)

	Compiles a function into a callable TensorFlow graph.

tf.function constructs a callable that executes a TensorFlow graph
(tf.Graph) created by trace-compiling the TensorFlow operations in func,
effectively executing func as a TensorFlow graph.

Example usage:

>>> @tf.function
... def f(x, y):
...   return x ** 2 + y
>>> x = tf.constant([2, 3])
>>> y = tf.constant([3, -2])
>>> f(x, y)
<tf.Tensor: ... numpy=array([7, 7], ...)>





_Features_

func may use data-dependent control flow, including if, for, while
break, continue and return statements:

>>> @tf.function
... def f(x):
...   if tf.reduce_sum(x) > 0:
...     return x * x
...   else:
...     return -x // 2
>>> f(tf.constant(-2))
<tf.Tensor: ... numpy=1>





func’s closure may include tf.Tensor and tf.Variable objects:

>>> @tf.function
... def f():
...   return x ** 2 + y
>>> x = tf.constant([-2, -3])
>>> y = tf.Variable([3, -2])
>>> f()
<tf.Tensor: ... numpy=array([7, 7], ...)>





func may also use ops with side effects, such as tf.print, tf.Variable
and others:

>>> v = tf.Variable(1)
>>> @tf.function
... def f(x):
...   for i in tf.range(x):
...     v.assign_add(i)
>>> f(3)
>>> v
<tf.Variable ... numpy=4>





Important: Any Python side-effects (appending to a list, printing with
print, etc) will only happen once, when func is traced. To have
side-effects executed into your tf.function they need to be written
as TF ops:

>>> l = []
>>> @tf.function
... def f(x):
...   for i in x:
...     l.append(i + 1)    # Caution! Will only happen once when tracing
>>> f(tf.constant([1, 2, 3]))
>>> l
[<tf.Tensor ...>]





Instead, use TensorFlow collections like tf.TensorArray:

>>> @tf.function
... def f(x):
...   ta = tf.TensorArray(dtype=tf.int32, size=0, dynamic_size=True)
...   for i in range(len(x)):
...     ta = ta.write(i, x[i] + 1)
...   return ta.stack()
>>> f(tf.constant([1, 2, 3]))
<tf.Tensor: ..., numpy=array([2, 3, 4], ...)>





tf.function is polymorphic_

Internally, tf.function can build more than one graph, to support arguments
with different data types or shapes, since TensorFlow can build more
efficient graphs that are specialized on shapes and dtypes. tf.function
also treats any pure Python value as opaque objects, and builds a separate
graph for each set of Python arguments that it encounters.

To obtain an individual graph, use the get_concrete_function method of
the callable created by tf.function. It can be called with the same
arguments as func and returns a special tf.Graph object:

>>> @tf.function
... def f(x):
...   return x + 1
>>> isinstance(f.get_concrete_function(1).graph, tf.Graph)
True





Caution: Passing python scalars or lists as arguments to tf.function will
always build a new graph. To avoid this, pass numeric arguments as Tensors
whenever possible:

>>> @tf.function
... def f(x):
...   return tf.abs(x)
>>> f1 = f.get_concrete_function(1)
>>> f2 = f.get_concrete_function(2)  # Slow - builds new graph
>>> f1 is f2
False
>>> f1 = f.get_concrete_function(tf.constant(1))
>>> f2 = f.get_concrete_function(tf.constant(2))  # Fast - reuses f1
>>> f1 is f2
True





Python numerical arguments should only be used when they take few distinct
values, such as hyperparameters like the number of layers in a neural network.

_Input signatures_

For Tensor arguments, tf.function instantiates a separate graph for every
unique set of input shapes and datatypes. The example below creates two
separate graphs, each specialized to a different shape:

>>> @tf.function
... def f(x):
...   return x + 1
>>> vector = tf.constant([1.0, 1.0])
>>> matrix = tf.constant([[3.0]])
>>> f.get_concrete_function(vector) is f.get_concrete_function(matrix)
False





An “input signature” can be optionally provided to tf.function to control
the graphs traced. The input signature specifies the shape and type of each
Tensor argument to the function using a tf.TensorSpec object. More general
shapes can be used. This is useful to avoid creating multiple graphs when
Tensors have dynamic shapes. It also restricts the shape and datatype of
Tensors that can be used:

>>> @tf.function(
...     input_signature=[tf.TensorSpec(shape=None, dtype=tf.float32)])
... def f(x):
...   return x + 1
>>> vector = tf.constant([1.0, 1.0])
>>> matrix = tf.constant([[3.0]])
>>> f.get_concrete_function(vector) is f.get_concrete_function(matrix)
True





_Variables may only be created once_

tf.function only allows creating new tf.Variable objects when it is called
for the first time:

>>> class MyModule(tf.Module):
...   def __init__(self):
...     self.v = None
...
...   @tf.function
...   def call(self, x):
...     if self.v is None:
...       self.v = tf.Variable(tf.ones_like(x))
...     return self.v * x





In general, it is recommended to create stateful objects like tf.Variable
outside of tf.function and passing them as arguments.


	参数

	
	func – the function to be compiled. If func is None, tf.function returns
a decorator that can be invoked with a single argument - func. In other
words, tf.function(input_signature=…)(func) is equivalent to
tf.function(func, input_signature=…). The former can be used as
decorator.


	input_signature – A possibly nested sequence of tf.TensorSpec objects
specifying the shapes and dtypes of the Tensors that will be supplied to
this function. If None, a separate function is instantiated for each
inferred input signature.  If input_signature is specified, every input to
func must be a Tensor, and func cannot accept **kwargs.


	autograph – Whether autograph should be applied on func before tracing a
graph. Data-dependent control flow requires autograph=True. For more
information, see the [tf.function and AutoGraph guide](
https://www.tensorflow.org/guide/function).


	experimental_implements – If provided, contains a name of a “known” function
this implements. For example “mycompany.my_recurrent_cell”.
This is stored as an attribute in inference function,
which can then be detected when processing serialized function.
See [standardizing composite ops](https://github.com/tensorflow/community/blob/master/rfcs/20190610-standardizing-composite_ops.md)  # pylint: disable=line-too-long
for details.  For an example of utilizing this attribute see this
[example](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/transforms/prepare_composite_functions_tf.cc)
The code above automatically detects and substitutes function that
implements “embedded_matmul” and allows TFLite to substitute its own
implementations. For instance, a tensorflow user can use this


attribute to mark that their function also implements




embedded_matmul (perhaps more efficiently!)
by specifying it using this parameter:
@tf.function(experimental_implements=”embedded_matmul”)




	experimental_autograph_options – Optional tuple of
tf.autograph.experimental.Feature values.


	experimental_relax_shapes – When True, tf.function may generate fewer,
graphs that are less specialized on input shapes.


	experimental_compile – If True, the function is always compiled by
[XLA](https://www.tensorflow.org/xla). XLA may be more efficient in some
cases (e.g. TPU, XLA_GPU, dense tensor computations).






	返回

	If func is not None, returns a callable that will execute the compiled
function (and return zero or more tf.Tensor objects).
If func is None, returns a decorator that, when invoked with a single
func argument, returns a callable equivalent to the case above.



	Raises

	
	ValueError when attempting to use experimental_compile, but XLA support is


	not enabled.













	
tensorflow.gather(params, indices, validate_indices=None, axis=None, batch_dims=0, name=None)

	Gather slices from params axis axis according to indices.

Gather slices from params axis axis according to indices.  indices must
be an integer tensor of any dimension (usually 0-D or 1-D).

For 0-D (scalar) indices:

$$begin{align*}
output[p_0, …, p_{axis-1}, &&          &&& p_{axis + 1}, …, p_{N-1}] = \
params[p_0, …, p_{axis-1}, && indices, &&& p_{axis + 1}, …, p_{N-1}]
end{align*}$$

Where N = ndims(params).

For 1-D (vector) indices with batch_dims=0:

$$begin{align*}
output[p_0, …, p_{axis-1}, &&         &i,  &&p_{axis + 1}, …, p_{N-1}] =\
params[p_0, …, p_{axis-1}, && indices[&i], &&p_{axis + 1}, …, p_{N-1}]
end{align*}$$

In the general case, produces an output tensor where:

$$begin{align*}
output[p_0,             &…, p_{axis-1},                       &


&i_{B},           …, i_{M-1},                          &
p_{axis + 1},    &…, p_{N-1}]                          = \





	params[p_0,             &…, p_{axis-1},                       &

	indices[p_0, …, p_{B-1}, &i_{B}, …, i_{M-1}],        &
p_{axis + 1},    &…, p_{N-1}]





end{align*}$$

Where N = ndims(params), M = ndims(indices), and B = batch_dims.
Note that params.shape[:batch_dims] must be identical to
indices.shape[:batch_dims].

The shape of the output tensor is:

> output.shape = params.shape[:axis] + indices.shape[batch_dims:] +
> params.shape[axis + 1:].

Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, a 0 is stored in the corresponding
output value.

See also tf.gather_nd.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/Gather.png”
alt>
</div>


	参数

	
	params – The Tensor from which to gather values. Must be at least rank
axis + 1.


	indices – The index Tensor.  Must be one of the following types: int32,
int64. Must be in range [0, params.shape[axis]).


	validate_indices – Deprecated, does nothing.


	axis – A Tensor. Must be one of the following types: int32, int64. The
axis in params to gather indices from. Must be greater than or equal
to batch_dims.  Defaults to the first non-batch dimension. Supports
negative indexes.


	batch_dims – An integer.  The number of batch dimensions.  Must be less
than or equal to rank(indices).


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as params.










	
tensorflow.gather_nd(params, indices, batch_dims=0, name=None)

	Gather slices from params into a Tensor with shape specified by indices.

indices is an K-dimensional integer tensor, best thought of as a
(K-1)-dimensional tensor of indices into params, where each element defines
a slice of params:


output[\(i_0, …, i_{K-2}\)] = params[indices[\(i_0, …, i_{K-2}\)]]




Whereas in tf.gather indices defines slices into the first
dimension of params, in tf.gather_nd, indices defines slices into the
first N dimensions of params, where N = indices.shape[-1].

The last dimension of indices can be at most the rank of
params:


indices.shape[-1] <= params.rank




The last dimension of indices corresponds to elements
(if indices.shape[-1] == params.rank) or slices
(if indices.shape[-1] < params.rank) along dimension indices.shape[-1]
of params.  The output tensor has shape


indices.shape[:-1] + params.shape[indices.shape[-1]:]




Additionally both ‘params’ and ‘indices’ can have M leading batch
dimensions that exactly match. In this case ‘batch_dims’ must be M.

Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, a 0 is stored in the
corresponding output value.

Some examples below.

Simple indexing into a matrix:


	```python

	indices = [[0, 0], [1, 1]]
params = [[‘a’, ‘b’], [‘c’, ‘d’]]
output = [‘a’, ‘d’]





```

Slice indexing into a matrix:


	```python

	indices = [[1], [0]]
params = [[‘a’, ‘b’], [‘c’, ‘d’]]
output = [[‘c’, ‘d’], [‘a’, ‘b’]]





```

Indexing into a 3-tensor:


	```python

	indices = [[1]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]

indices = [[0, 1], [1, 0]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[‘c0’, ‘d0’], [‘a1’, ‘b1’]]

indices = [[0, 0, 1], [1, 0, 1]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [‘b0’, ‘b1’]





```

The examples below are for the case when only indices have leading extra
dimensions. If both ‘params’ and ‘indices’ have leading batch dimensions, use
the ‘batch_dims’ parameter to run gather_nd in batch mode.

Batched indexing into a matrix:


	```python

	indices = [[[0, 0]], [[0, 1]]]
params = [[‘a’, ‘b’], [‘c’, ‘d’]]
output = [[‘a’], [‘b’]]





```

Batched slice indexing into a matrix:


	```python

	indices = [[[1]], [[0]]]
params = [[‘a’, ‘b’], [‘c’, ‘d’]]
output = [[[‘c’, ‘d’]], [[‘a’, ‘b’]]]





```

Batched indexing into a 3-tensor:


	```python

	indices = [[[1]], [[0]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]





	output = [[[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]],

	[[[‘a0’, ‘b0’], [‘c0’, ‘d0’]]]]





indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]





	output = [[[‘c0’, ‘d0’], [‘a1’, ‘b1’]],

	[[‘a0’, ‘b0’], [‘c1’, ‘d1’]]]





indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[‘b0’, ‘b1’], [‘d0’, ‘c1’]]





```

Examples with batched ‘params’ and ‘indices’:


	```python

	batch_dims = 1
indices = [[1], [0]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[‘c0’, ‘d0’], [‘a1’, ‘b1’]]

batch_dims = 1
indices = [[[1]], [[0]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[[‘c0’, ‘d0’]], [[‘a1’, ‘b1’]]]

batch_dims = 1
indices = [[[1, 0]], [[0, 1]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[‘c0’], [‘b1’]]





```

See also tf.gather.


	参数

	
	params – A Tensor. The tensor from which to gather values.


	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	name – A name for the operation (optional).


	batch_dims – An integer or a scalar ‘Tensor’. The number of batch dimensions.






	返回

	A Tensor. Has the same type as params.










	
tensorflow.get_logger()

	Return TF logger instance.






	
tensorflow.get_static_value(tensor, partial=False)

	Returns the constant value of the given tensor, if efficiently calculable.

This function attempts to partially evaluate the given tensor, and
returns its value as a numpy ndarray if this succeeds.

Compatibility(V1): If constant_value(tensor) returns a non-None result, it
will no longer be possible to feed a different value for tensor. This allows
the result of this function to influence the graph that is constructed, and
permits static shape optimizations.


	参数

	
	tensor – The Tensor to be evaluated.


	partial – If True, the returned numpy array is allowed to have partially
evaluated values. Values that can’t be evaluated will be None.






	返回

	A numpy ndarray containing the constant value of the given tensor,
or None if it cannot be calculated.



	Raises

	TypeError – if tensor is not an ops.Tensor.










	
tensorflow.grad_pass_through(f)

	Creates a grad-pass-through op with the forward behavior provided in f.

Use this function to wrap any op, maintaining its behavior in the forward
pass, but replacing the original op in the backward graph with an identity.
For example:

```python
x = tf.Variable(1.0, name=”x”)
z = tf.Variable(3.0, name=”z”)


	with tf.GradientTape() as tape:

	# y will evaluate to 9.0
y = tf.grad_pass_through(x.assign)(z**2)





# grads will evaluate to 6.0
grads = tape.gradient(y, z)
```

Another example is a ‘differentiable’ moving average approximation, where
gradients are allowed to flow into the last value fed to the moving average,
but the moving average is still used for the forward pass:

```python
x = … # Some scalar value
# A moving average object, we don’t need to know how this is implemented
moving_average = MovingAverage()
with backprop.GradientTape() as tape:


# mavg_x will evaluate to the current running average value
mavg_x = tf.grad_pass_through(moving_average)(x)




grads = tape.gradient(mavg_x, x) # grads will evaluate to 1.0
```


	参数

	f – function f(*x) that returns a Tensor or nested structure of Tensor
outputs.



	返回

	A function h(x) which returns the same values as f(x) and whose
gradients are the same as those of an identity function.










	
tensorflow.gradients(ys, xs, grad_ys=None, name='gradients', gate_gradients=False, aggregation_method=None, stop_gradients=None, unconnected_gradients=<UnconnectedGradients.NONE: 'none'>)

	Constructs symbolic derivatives of sum of ys w.r.t. x in xs.

ys and xs are each a Tensor or a list of tensors.  grad_ys
is a list of Tensor, holding the gradients received by the
ys. The list must be the same length as ys.

gradients() adds ops to the graph to output the derivatives of ys with
respect to xs.  It returns a list of Tensor of length len(xs) where
each tensor is the sum(dy/dx) for y in ys and for x in xs.

grad_ys is a list of tensors of the same length as ys that holds
the initial gradients for each y in ys.  When grad_ys is None,
we fill in a tensor of ‘1’s of the shape of y for each y in ys.  A
user can provide their own initial grad_ys to compute the
derivatives using a different initial gradient for each y (e.g., if
one wanted to weight the gradient differently for each value in
each y).

stop_gradients is a Tensor or a list of tensors to be considered constant
with respect to all xs. These tensors will not be backpropagated through,
as though they had been explicitly disconnected using stop_gradient.  Among
other things, this allows computation of partial derivatives as opposed to
total derivatives. For example:

`python
a = tf.constant(0.)
b = 2 * a
g = tf.gradients(a + b, [a, b], stop_gradients=[a, b])
`

Here the partial derivatives g evaluate to [1.0, 1.0], compared to the
total derivatives tf.gradients(a + b, [a, b]), which take into account the
influence of a on b and evaluate to [3.0, 1.0].  Note that the above is
equivalent to:

`python
a = tf.stop_gradient(tf.constant(0.))
b = tf.stop_gradient(2 * a)
g = tf.gradients(a + b, [a, b])
`

stop_gradients provides a way of stopping gradient after the graph has
already been constructed, as compared to tf.stop_gradient which is used
during graph construction.  When the two approaches are combined,
backpropagation stops at both tf.stop_gradient nodes and nodes in
stop_gradients, whichever is encountered first.

All integer tensors are considered constant with respect to all xs, as if
they were included in stop_gradients.

unconnected_gradients determines the value returned for each x in xs if it
is unconnected in the graph to ys. By default this is None to safeguard
against errors. Mathematically these gradients are zero which can be requested
using the ‘zero’ option. tf.UnconnectedGradients provides the
following options and behaviors:

```python
a = tf.ones([1, 2])
b = tf.ones([3, 1])
g1 = tf.gradients([b], [a], unconnected_gradients=’none’)
sess.run(g1)  # [None]

g2 = tf.gradients([b], [a], unconnected_gradients=’zero’)
sess.run(g2)  # [array([[0., 0.]], dtype=float32)]
```

Let us take one practical example which comes during the back propogation
phase. This function is used to evaluate the derivatives of the cost function
with respect to Weights Ws and Biases bs. Below sample implementation
provides the exaplantion of what it is actually used for :

`python
Ws = tf.constant(0.)
bs = 2 * Ws
cost = Ws + bs  # This is just an example. So, please ignore the formulas.
g = tf.gradients(cost, [Ws, bs])
dCost_dW, dCost_db = g
`


	参数

	
	ys – A Tensor or list of tensors to be differentiated.


	xs – A Tensor or list of tensors to be used for differentiation.


	grad_ys – Optional. A Tensor or list of tensors the same size as
ys and holding the gradients computed for each y in ys.


	name – Optional name to use for grouping all the gradient ops together.
defaults to ‘gradients’.


	gate_gradients – If True, add a tuple around the gradients returned
for an operations.  This avoids some race conditions.


	aggregation_method – Specifies the method used to combine gradient terms.
Accepted values are constants defined in the class AggregationMethod.


	stop_gradients – Optional. A Tensor or list of tensors not to differentiate
through.


	unconnected_gradients – Optional. Specifies the gradient value returned when
the given input tensors are unconnected. Accepted values are constants
defined in the class tf.UnconnectedGradients and the default value is
none.






	返回

	A list of Tensor of length len(xs) where each tensor is the sum(dy/dx)
for y in ys and for x in xs.



	Raises

	
	LookupError – if one of the operations between x and y does not
have a registered gradient function.


	ValueError – if the arguments are invalid.


	RuntimeError – if called in Eager mode.













	
tensorflow.greater(x, y, name=None)

	Returns the truth value of (x > y) element-wise.

NOTE: math.greater supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

Example:

```python
x = tf.constant([5, 4, 6])
y = tf.constant([5, 2, 5])
tf.math.greater(x, y) ==> [False, True, True]

x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.greater(x, y) ==> [False, False, True]
```


	参数

	
	x – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.greater_equal(x, y, name=None)

	Returns the truth value of (x >= y) element-wise.

NOTE: math.greater_equal supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

Example:

```python
x = tf.constant([5, 4, 6, 7])
y = tf.constant([5, 2, 5, 10])
tf.math.greater_equal(x, y) ==> [True, True, True, False]

x = tf.constant([5, 4, 6, 7])
y = tf.constant([5])
tf.math.greater_equal(x, y) ==> [True, False, True, True]
```


	参数

	
	x – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.group(*inputs, **kwargs)

	Create an op that groups multiple operations.

When this op finishes, all ops in inputs have finished. This op has no
output.

See also tf.tuple and
tf.control_dependencies.


	参数

	
	*inputs – Zero or more tensors to group.


	name – A name for this operation (optional).






	返回

	An Operation that executes all its inputs.



	Raises

	ValueError – If an unknown keyword argument is provided.










	
tensorflow.guarantee_const(input, name=None)

	Gives a guarantee to the TF runtime that the input tensor is a constant.

The runtime is then free to make optimizations based on this.

Only accepts value typed tensors as inputs and rejects resource variable handles
as input.

Returns the input tensor without modification.


	参数

	
	input – A Tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.hessians(ys, xs, gate_gradients=False, aggregation_method=None, name='hessians')

	Constructs the Hessian of sum of ys with respect to x in xs.

hessians() adds ops to the graph to output the Hessian matrix of ys
with respect to xs.  It returns a list of Tensor of length len(xs)
where each tensor is the Hessian of sum(ys).

The Hessian is a matrix of second-order partial derivatives of a scalar
tensor (see https://en.wikipedia.org/wiki/Hessian_matrix for more details).


	参数

	
	ys – A Tensor or list of tensors to be differentiated.


	xs – A Tensor or list of tensors to be used for differentiation.


	name – Optional name to use for grouping all the gradient ops together.
defaults to ‘hessians’.


	colocate_gradients_with_ops – See gradients() documentation for details.


	gate_gradients – See gradients() documentation for details.


	aggregation_method – See gradients() documentation for details.






	返回

	A list of Hessian matrices of sum(ys) for each x in xs.



	Raises

	LookupError – if one of the operations between xs and ys does not
have a registered gradient function.










	
tensorflow.histogram_fixed_width(values, value_range, nbins=100, dtype=tf.int32, name=None)

	Return histogram of values.

Given the tensor values, this operation returns a rank 1 histogram counting
the number of entries in values that fell into every bin.  The bins are
equal width and determined by the arguments value_range and nbins.


	参数

	
	values – Numeric Tensor.


	value_range – Shape [2] Tensor of same dtype as values.
values <= value_range[0] will be mapped to hist[0],
values >= value_range[1] will be mapped to hist[-1].


	nbins – Scalar int32 Tensor.  Number of histogram bins.


	dtype – dtype for returned histogram.


	name – A name for this operation (defaults to ‘histogram_fixed_width’).






	返回

	A 1-D Tensor holding histogram of values.



	Raises

	
	TypeError – If any unsupported dtype is provided.


	tf.errors.InvalidArgumentError – If value_range does not
satisfy value_range[0] < value_range[1].








Examples:

```python
# Bins will be:  (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
nbins = 5
value_range = [0.0, 5.0]
new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]


	with tf.compat.v1.get_default_session() as sess:

	hist = tf.histogram_fixed_width(new_values, value_range, nbins=5)
variables.global_variables_initializer().run()
sess.run(hist) => [2, 1, 1, 0, 2]





```






	
tensorflow.histogram_fixed_width_bins(values, value_range, nbins=100, dtype=tf.int32, name=None)

	Bins the given values for use in a histogram.

Given the tensor values, this operation returns a rank 1 Tensor
representing the indices of a histogram into which each element
of values would be binned. The bins are equal width and
determined by the arguments value_range and nbins.


	参数

	
	values – Numeric Tensor.


	value_range – Shape [2] Tensor of same dtype as values.
values <= value_range[0] will be mapped to hist[0],
values >= value_range[1] will be mapped to hist[-1].


	nbins – Scalar int32 Tensor.  Number of histogram bins.


	dtype – dtype for returned histogram.


	name – A name for this operation (defaults to ‘histogram_fixed_width’).






	返回

	A Tensor holding the indices of the binned values whose shape matches
values.



	Raises

	
	TypeError – If any unsupported dtype is provided.


	tf.errors.InvalidArgumentError – If value_range does not
satisfy value_range[0] < value_range[1].








Examples:

```python
# Bins will be:  (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
nbins = 5
value_range = [0.0, 5.0]
new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]


	with tf.compat.v1.get_default_session() as sess:

	indices = tf.histogram_fixed_width_bins(new_values, value_range, nbins=5)
variables.global_variables_initializer().run()
sess.run(indices) # [0, 0, 1, 2, 4, 4]





```






	
tensorflow.identity(input, name=None)

	Return a Tensor with the same shape and contents as input.

The return value is not the same Tensor as the original, but contains the same
values.  This operation is fast when used on the same device.

For example:

>>> a = tf.constant([0.78])
>>> a_identity = tf.identity(a)
>>> a.numpy()
array([0.78], dtype=float32)
>>> a_identity.numpy()
array([0.78], dtype=float32)





Calling tf.identity on a variable will make a Tensor that represents the
value of that variable at the time it is called. This is equivalent to calling
<variable>.read_value().

>>> a = tf.Variable(5)
>>> a_identity = tf.identity(a)
>>> a.assign_add(1)
<tf.Variable ... shape=() dtype=int32, numpy=6>
>>> a.numpy()
6
>>> a_identity.numpy()
5






	参数

	
	input – A Tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.identity_n(input, name=None)

	Returns a list of tensors with the same shapes and contents as the input

tensors.

This op can be used to override the gradient for complicated functions. For
example, suppose y = f(x) and we wish to apply a custom function g for backprop
such that dx = g(dy). In Python,

```python
with tf.get_default_graph().gradient_override_map(



{‘IdentityN’: ‘OverrideGradientWithG’}):




y, _ = identity_n([f(x), x])




@tf.RegisterGradient(‘OverrideGradientWithG’)
def ApplyG(op, dy, _):


return [None, g(dy)]  # Do not backprop to f(x).




```


	参数

	
	input – A list of Tensor objects.


	name – A name for the operation (optional).






	返回

	A list of Tensor objects. Has the same type as input.










	
tensorflow.import_graph_def(graph_def, input_map=None, return_elements=None, name=None, op_dict=None, producer_op_list=None)

	Imports the graph from graph_def into the current default Graph. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (op_dict). They will be removed in a future version.
Instructions for updating:
Please file an issue at https://github.com/tensorflow/tensorflow/issues if you depend on this feature.

This function provides a way to import a serialized TensorFlow
[GraphDef](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
protocol buffer, and extract individual objects in the GraphDef as
tf.Tensor and tf.Operation objects. Once extracted,
these objects are placed into the current default Graph. See
tf.Graph.as_graph_def for a way to create a GraphDef
proto.


	参数

	
	graph_def – A GraphDef proto containing operations to be imported into
the default graph.


	input_map – A dictionary mapping input names (as strings) in graph_def
to Tensor objects. The values of the named input tensors in the
imported graph will be re-mapped to the respective Tensor values.


	return_elements – A list of strings containing operation names in
graph_def that will be returned as Operation objects; and/or
tensor names in graph_def that will be returned as Tensor objects.


	name – (Optional.) A prefix that will be prepended to the names in
graph_def. Note that this does not apply to imported function names.
Defaults to “import”.


	op_dict – (Optional.) Deprecated, do not use.


	producer_op_list – (Optional.) An OpList proto with the (possibly stripped)
list of OpDef`s used by the producer of the graph. If provided,
unrecognized attrs for ops in `graph_def that have their default value
according to producer_op_list will be removed. This will allow some more
`GraphDef`s produced by later binaries to be accepted by earlier binaries.






	返回

	A list of Operation and/or Tensor objects from the imported graph,
corresponding to the names in return_elements,
and None if returns_elements is None.



	Raises

	
	TypeError – If graph_def is not a GraphDef proto,
input_map is not a dictionary mapping strings to Tensor objects,
or return_elements is not a list of strings.


	ValueError – If input_map, or return_elements contains names that
do not appear in graph_def, or graph_def is not well-formed (e.g.
it refers to an unknown tensor).













	
tensorflow.init_scope()

	A context manager that lifts ops out of control-flow scopes and function-building graphs.

There is often a need to lift variable initialization ops out of control-flow
scopes, function-building graphs, and gradient tapes. Entering an
init_scope is a mechanism for satisfying these desiderata. In particular,
entering an init_scope has three effects:



	All control dependencies are cleared the moment the scope is entered;
this is equivalent to entering the context manager returned from
control_dependencies(None), which has the side-effect of exiting
control-flow scopes like tf.cond and tf.while_loop.


	All operations that are created while the scope is active are lifted
into the lowest context on the context_stack that is not building a
graph function. Here, a context is defined as either a graph or an eager
context. Every context switch, i.e., every installation of a graph as
the default graph and every switch into eager mode, is logged in a
thread-local stack called context_switches; the log entry for a
context switch is popped from the stack when the context is exited.
Entering an init_scope is equivalent to crawling up
context_switches, finding the first context that is not building a
graph function, and entering it. A caveat is that if graph mode is
enabled but the default graph stack is empty, then entering an
init_scope will simply install a fresh graph as the default one.


	The gradient tape is paused while the scope is active.







When eager execution is enabled, code inside an init_scope block runs with
eager execution enabled even when tracing a tf.function. For example:

```python
tf.compat.v1.enable_eager_execution()

@tf.function
def func():


# A function constructs TensorFlow graphs,
# it does not execute eagerly.
assert not tf.executing_eagerly()
with tf.init_scope():


# Initialization runs with eager execution enabled
assert tf.executing_eagerly()







```


	Raises

	RuntimeError – if graph state is incompatible with this initialization.










	
tensorflow.is_tensor(x)

	Checks whether x is a tensor or “tensor-like”.

If is_tensor(x) returns True, it is safe to assume that x is a tensor or
can be converted to a tensor using ops.convert_to_tensor(x).

Usage example:

>>> tf.is_tensor(tf.constant([[1,2,3],[4,5,6],[7,8,9]]))
True
>>> tf.is_tensor("Hello World")
False






	参数

	x – A python object to check.



	返回

	True if x is a tensor or “tensor-like”, False if not.










	
tensorflow.less(x, y, name=None)

	Returns the truth value of (x < y) element-wise.

NOTE: math.less supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

Example:

```python
x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.less(x, y) ==> [False, True, False]

x = tf.constant([5, 4, 6])
y = tf.constant([5, 6, 7])
tf.math.less(x, y) ==> [False, True, True]
```


	参数

	
	x – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.less_equal(x, y, name=None)

	Returns the truth value of (x <= y) element-wise.

NOTE: math.less_equal supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

Example:

```python
x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.less_equal(x, y) ==> [True, True, False]

x = tf.constant([5, 4, 6])
y = tf.constant([5, 6, 6])
tf.math.less_equal(x, y) ==> [True, True, True]
```


	参数

	
	x – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.linspace(start, stop, num, name=None)

	Generates values in an interval.

A sequence of num evenly-spaced values are generated beginning at start.
If num > 1, the values in the sequence increase by stop - start / num - 1,
so that the last one is exactly stop.

For example:

`
tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0  11.0  12.0]
`


	参数

	
	start – A Tensor. Must be one of the following types: bfloat16, half, float32, float64.
0-D tensor. First entry in the range.


	stop – A Tensor. Must have the same type as start.
0-D tensor. Last entry in the range.


	num – A Tensor. Must be one of the following types: int32, int64.
0-D tensor. Number of values to generate.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as start.










	
tensorflow.load_library(library_location)

	Loads a TensorFlow plugin.

“library_location” can be a path to a specific shared object, or a folder.
If it is a folder, all shared objects that are named “libtfkernel*” will be
loaded. When the library is loaded, kernels registered in the library via the
REGISTER_* macros are made available in the TensorFlow process.


	参数

	library_location – Path to the plugin or the folder of plugins.
Relative or absolute filesystem path to a dynamic library file or folder.



	返回

	None



	Raises

	
	OSError – When the file to be loaded is not found.


	RuntimeError – when unable to load the library.













	
tensorflow.load_op_library(library_filename)

	Loads a TensorFlow plugin, containing custom ops and kernels.

Pass “library_filename” to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here. When the
library is loaded, ops and kernels registered in the library via the
REGISTER_* macros are made available in the TensorFlow process. Note
that ops with the same name as an existing op are rejected and not
registered with the process.


	参数

	library_filename – Path to the plugin.
Relative or absolute filesystem path to a dynamic library file.



	返回

	A python module containing the Python wrappers for Ops defined in
the plugin.



	Raises

	RuntimeError – when unable to load the library or get the python wrappers.










	
tensorflow.logical_and(x, y, name=None)

	Logical AND function.

The operation works for the following input types:


	Two single elements of type bool


	One tf.Tensor of type bool and one single bool, where the result will
be calculated by applying logical AND with the single element to each
element in the larger Tensor.


	Two tf.Tensor objects of type bool of the same shape. In this case,
the result will be the element-wise logical AND of the two input tensors.




Usage:

>>> a = tf.constant([True])
>>> b = tf.constant([False])
>>> tf.math.logical_and(a, b)
<tf.Tensor: shape=(1,), dtype=bool, numpy=array([False])>





>>> c = tf.constant([True])
>>> x = tf.constant([False, True, True, False])
>>> tf.math.logical_and(c, x)
<tf.Tensor: shape=(4,), dtype=bool, numpy=array([False,  True,  True, False])>





>>> y = tf.constant([False, False, True, True])
>>> z = tf.constant([False, True, False, True])
>>> tf.math.logical_and(y, z)
<tf.Tensor: shape=(4,), dtype=bool, numpy=array([False, False, False,  True])>






	参数

	
	x – A tf.Tensor type bool.


	y – A tf.Tensor of type bool.


	name – A name for the operation (optional).






	返回

	A tf.Tensor of type bool with the same size as that of x or y.










	
tensorflow.logical_not(x, name=None)

	Returns the truth value of NOT x element-wise.

Example:

>>> tf.math.logical_not(tf.constant([True, False]))
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([False,  True])>






	参数

	
	x – A Tensor of type bool. A Tensor of type bool.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.logical_or(x, y, name=None)

	Returns the truth value of x OR y element-wise.

NOTE: math.logical_or supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor of type bool.


	y – A Tensor of type bool.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.make_ndarray(tensor)

	Create a numpy ndarray from a tensor.

Create a numpy ndarray with the same shape and data as the tensor.

For example:

`python
# Tensor a has shape (2,3)
a = tf.constant([[1,2,3],[4,5,6]])
proto_tensor = tf.make_tensor_proto(a)  # convert `tensor a` to a proto tensor
tf.make_ndarray(proto_tensor) # output: array([[1, 2, 3],
#                                              [4, 5, 6]], dtype=int32)
# output has shape (2,3)
`


	参数

	tensor – A TensorProto.



	返回

	A numpy array with the tensor contents.



	Raises

	TypeError – if tensor has unsupported type.










	
tensorflow.make_tensor_proto(values, dtype=None, shape=None, verify_shape=False, allow_broadcast=False)

	Create a TensorProto.

In TensorFlow 2.0, representing tensors as protos should no longer be a
common workflow. That said, this utility function is still useful for
generating TF Serving request protos:


	```python

	request = tensorflow_serving.apis.predict_pb2.PredictRequest()
request.model_spec.name = “my_model”
request.model_spec.signature_name = “serving_default”
request.inputs[“images”].CopyFrom(tf.make_tensor_proto(X_new))





```

make_tensor_proto accepts “values” of a python scalar, a python list, a
numpy ndarray, or a numpy scalar.

If “values” is a python scalar or a python list, make_tensor_proto
first convert it to numpy ndarray. If dtype is None, the
conversion tries its best to infer the right numpy data
type. Otherwise, the resulting numpy array has a compatible data
type with the given dtype.

In either case above, the numpy ndarray (either the caller provided
or the auto-converted) must have the compatible type with dtype.

make_tensor_proto then converts the numpy array to a tensor proto.

If “shape” is None, the resulting tensor proto represents the numpy
array precisely.

Otherwise, “shape” specifies the tensor’s shape and the numpy array
can not have more elements than what “shape” specifies.


	参数

	
	values – Values to put in the TensorProto.


	dtype – Optional tensor_pb2 DataType value.


	shape – List of integers representing the dimensions of tensor.


	verify_shape – Boolean that enables verification of a shape of values.


	allow_broadcast – Boolean that enables allowing scalars and 1 length vector
broadcasting. Cannot be true when verify_shape is true.






	返回

	A TensorProto. Depending on the type, it may contain data in the
“tensor_content” attribute, which is not directly useful to Python programs.
To access the values you should convert the proto back to a numpy ndarray
with tf.make_ndarray(proto).

If values is a TensorProto, it is immediately returned; dtype and
shape are ignored.





	Raises

	
	TypeError – if unsupported types are provided.


	ValueError – if arguments have inappropriate values or if verify_shape is
True and shape of values is not equals to a shape from the argument.













	
tensorflow.map_fn(fn, elems, dtype=None, parallel_iterations=None, back_prop=True, swap_memory=False, infer_shape=True, name=None)

	map on the list of tensors unpacked from elems on dimension 0. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.map_fn(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.map_fn(fn, elems))

The simplest version of map_fn repeatedly applies the callable fn to a
sequence of elements from first to last. The elements are made of the
tensors unpacked from elems. dtype is the data type of the return
value of fn. Users must provide dtype if it is different from
the data type of elems.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is [values.shape[0]] + fn(values[0]).shape.

This method also allows multi-arity elems and output of fn.  If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension.  The signature of fn may
match the structure of elems.  That is, if elems is
(t1, [t2, t3, [t4, t5]]), then an appropriate signature for fn is:
fn = lambda (t1, [t2, t3, [t4, t5]]):.

Furthermore, fn may emit a different structure than its input.  For example,
fn may look like: fn = lambda t1: return (t1 + 1, t1 - 1).  In this case,
the dtype parameter is not optional: dtype must be a type or (possibly
nested) tuple of types matching the output of fn.

To apply a functional operation to the nonzero elements of a SparseTensor
one of the following methods is recommended. First, if the function is
expressible as TensorFlow ops, use


	```python

	result = SparseTensor(input.indices, fn(input.values), input.dense_shape)





```

If, however, the function is not expressible as a TensorFlow op, then use

```python
result = SparseTensor(


input.indices, map_fn(fn, input.values), input.dense_shape)




```

instead.

When executing eagerly, map_fn does not execute in parallel even if
parallel_iterations is set to a value > 1. You can still get the
performance benefits of running a function in parallel by using the
tf.function decorator,

```python
# Assume the function being used in map_fn is fn.
# To ensure map_fn calls fn in parallel, use the tf.function decorator.
@tf.function
def func(tensor):


return tf.map_fn(fn, tensor)




```

Note that if you use the tf.function decorator, any non-TensorFlow Python
code that you may have written in your function won’t get executed. See
[tf.function](https://www.tensorflow.org/api_docs/python/tf/function) for
more  details. The recommendation would be to debug without tf.function but
switch to it to get performance benefits of running map_fn in parallel.


	参数

	
	fn – The callable to be performed.  It accepts one argument, which will have
the same (possibly nested) structure as elems.  Its output must have the
same structure as dtype if one is provided, otherwise it must have the
same structure as elems.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension.  The nested sequence of the
resulting slices will be applied to fn.


	dtype – (optional) The output type(s) of fn.  If fn returns a structure
of Tensors differing from the structure of elems, then dtype is not
optional and must have the same structure as the output of fn.


	parallel_iterations – (optional) The number of iterations allowed to run in
parallel. When graph building, the default value is 10. While executing
eagerly, the default value is set to 1.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – (optional) True enables GPU-CPU memory swapping.


	infer_shape – (optional) False disables tests for consistent output shapes.


	name – (optional) Name prefix for the returned tensors.






	返回

	A tensor or (possibly nested) sequence of tensors.  Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, from first to last.



	Raises

	
	TypeError – if fn is not callable or the structure of the output of
fn and dtype do not match, or if elems is a SparseTensor.


	ValueError – if the lengths of the output of fn and dtype do not match.








实际案例

`python
elems = np.array([1, 2, 3, 4, 5, 6])
squares = map_fn(lambda x: x * x, elems)
# squares == [1, 4, 9, 16, 25, 36]
`

`python
elems = (np.array([1, 2, 3]), np.array([-1, 1, -1]))
alternate = map_fn(lambda x: x[0] * x[1], elems, dtype=tf.int64)
# alternate == [-1, 2, -3]
`

`python
elems = np.array([1, 2, 3])
alternates = map_fn(lambda x: (x, -x), elems, dtype=(tf.int64, tf.int64))
# alternates[0] == [1, 2, 3]
# alternates[1] == [-1, -2, -3]
`






	
tensorflow.matmul(a, b, transpose_a=False, transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=False, b_is_sparse=False, name=None)

	Multiplies matrix a by matrix b, producing a * b.

The inputs must, following any transpositions, be tensors of rank >= 2
where the inner 2 dimensions specify valid matrix multiplication dimensions,
and any further outer dimensions specify matching batch size.

Both matrices must be of the same type. The supported types are:
float16, float32, float64, int32, complex64, complex128.

Either matrix can be transposed or adjointed (conjugated and transposed) on
the fly by setting one of the corresponding flag to True. These are False
by default.

If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse or b_is_sparse flag to True. These are False by default.
This optimization is only available for plain matrices (rank-2 tensors) with
datatypes bfloat16 or float32.

A simple 2-D tensor matrix multiplication:

>>> a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
>>> a  # 2-D tensor
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)>
>>> b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
>>> b  # 2-D tensor
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[ 7,  8],
       [ 9, 10],
       [11, 12]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c  # `a` * `b`
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 58,  64],
       [139, 154]], dtype=int32)>





A batch matrix multiplication with batch shape [2]:

>>> a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
>>> a  # 3-D tensor
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]], dtype=int32)>
>>> b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
>>> b  # 3-D tensor
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[13, 14],
        [15, 16],
        [17, 18]],
       [[19, 20],
        [21, 22],
        [23, 24]]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c  # `a` * `b`
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
        [229, 244]],
       [[508, 532],
        [697, 730]]], dtype=int32)>





Since python >= 3.5 the @ operator is supported
(see [PEP 465](https://www.python.org/dev/peps/pep-0465/)). In TensorFlow,
it simply calls the tf.matmul() function, so the following lines are
equivalent:

>>> d = a @ b @ [[10], [11]]
>>> d = tf.matmul(tf.matmul(a, b), [[10], [11]])






	参数

	
	a – tf.Tensor of type float16, float32, float64, int32,
complex64, complex128 and rank > 1.


	b – tf.Tensor with same type and rank as a.


	transpose_a – If True, a is transposed before multiplication.


	transpose_b – If True, b is transposed before multiplication.


	adjoint_a – If True, a is conjugated and transposed before
multiplication.


	adjoint_b – If True, b is conjugated and transposed before
multiplication.


	a_is_sparse – If True, a is treated as a sparse matrix. Notice, this
does not support `tf.sparse.SparseTensor`, it just makes optimizations
that assume most values in a are zero.
See tf.sparse.sparse_dense_matmul
for some support for tf.SparseTensor multiplication.


	b_is_sparse – If True, b is treated as a sparse matrix. Notice, this
does not support `tf.sparse.SparseTensor`, it just makes optimizations
that assume most values in a are zero.
See tf.sparse.sparse_dense_matmul
for some support for tf.SparseTensor multiplication.


	name – Name for the operation (optional).






	返回

	A tf.Tensor of the same type as a and b where each inner-most matrix
is the product of the corresponding matrices in a and b, e.g. if all
transpose or adjoint attributes are False:

output[…, i, j] = sum_k (a[…, i, k] * b[…, k, j]),
for all indices i, j.

Note: This is matrix product, not element-wise product.





	Raises

	ValueError – If transpose_a and adjoint_a, or transpose_b and
adjoint_b are both set to True.










	
tensorflow.matrix_square_root(input, name=None)

	Computes the matrix square root of one or more square matrices:

matmul(sqrtm(A), sqrtm(A)) = A

The input matrix should be invertible. If the input matrix is real, it should
have no eigenvalues which are real and negative (pairs of complex conjugate
eigenvalues are allowed).

The matrix square root is computed by first reducing the matrix to
quasi-triangular form with the real Schur decomposition. The square root
of the quasi-triangular matrix is then computed directly. Details of
the algorithm can be found in: Nicholas J. Higham, “Computing real
square roots of a real matrix”, Linear Algebra Appl., 1987.

The input is a tensor of shape […, M, M] whose inner-most 2 dimensions
form square matrices. The output is a tensor of the same shape as the input
containing the matrix square root for all input submatrices […, :, :].


	参数

	
	input – A Tensor. Must be one of the following types: float64, float32, half, complex64, complex128.
Shape is […, M, M].


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.maximum(x, y, name=None)

	Returns the max of x and y (i.e. x > y ? x : y) element-wise.

Example:
>>> x = tf.constant([0., 0., 0., 0.])
>>> y = tf.constant([-2., 0., 2., 5.])
>>> tf.math.maximum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([0., 0., 2., 5.], dtype=float32)>


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.meshgrid(*args, **kwargs)

	Broadcasts parameters for evaluation on an N-D grid.

Given N one-dimensional coordinate arrays *args, returns a list outputs
of N-D coordinate arrays for evaluating expressions on an N-D grid.

Notes:

meshgrid supports cartesian (‘xy’) and matrix (‘ij’) indexing conventions.
When the indexing argument is set to ‘xy’ (the default), the broadcasting
instructions for the first two dimensions are swapped.

Examples:

Calling X, Y = meshgrid(x, y) with the tensors

`python
x = [1, 2, 3]
y = [4, 5, 6]
X, Y = tf.meshgrid(x, y)
# X = [[1, 2, 3],
#      [1, 2, 3],
#      [1, 2, 3]]
# Y = [[4, 4, 4],
#      [5, 5, 5],
#      [6, 6, 6]]
`


	参数

	
	*args – `Tensor`s with rank 1.


	**kwargs – 
	indexing: Either ‘xy’ or ‘ij’ (optional, default: ‘xy’).


	name: A name for the operation (optional).











	返回

	A list of N `Tensor`s with rank N.



	返回类型

	outputs



	Raises

	
	TypeError – When no keyword arguments (kwargs) are passed.


	ValueError – When indexing keyword argument is not one of xy or ij.













	
tensorflow.minimum(x, y, name=None)

	Returns the min of x and y (i.e. x < y ? x : y) element-wise.

Example:
>>> x = tf.constant([0., 0., 0., 0.])
>>> y = tf.constant([-5., -2., 0., 3.])
>>> tf.math.minimum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)>


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.multiply(x, y, name=None)

	Returns an element-wise x * y.

For example:

>>> x = tf.constant(([1, 2, 3, 4]))
>>> tf.math.multiply(x, x)
<tf.Tensor: shape=(4,), dtype=..., numpy=array([ 1,  4,  9, 16], dtype=int32)>





Since tf.math.multiply will convert its arguments to Tensor`s, you can also
pass in non-`Tensor arguments:

>>> tf.math.multiply(7,6)
<tf.Tensor: shape=(), dtype=int32, numpy=42>





If x.shape is not thes same as y.shape, they will be broadcast to a
compatible shape. (More about broadcasting
[here](https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html).)

For example:

>>> x = tf.ones([1, 2]);
>>> y = tf.ones([2, 1]);
>>> x * y  # Taking advantage of operator overriding
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 1.],
     [1., 1.]], dtype=float32)>






	参数

	
	x – A Tensor. Must be one of the following types: bfloat16,
half, float32, float64, uint8, int8, uint16,
int16, int32, int64, complex64, complex128.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).








Returns:

A Tensor.  Has the same type as x.


	Raises

	* InvalidArgumentError – When x and y have incomptatible shapes or types.










	
tensorflow.name_scope

	tensorflow.python.framework.ops.name_scope_v2 的别名






	
tensorflow.negative(x, name=None)

	Computes numerical negative value element-wise.

I.e., \(y = -x\).


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.negative(x.values, …), x.dense_shape)












	
tensorflow.no_gradient(op_type)

	Specifies that ops of type op_type is not differentiable.

This function should not be used for operations that have a
well-defined gradient that is not yet implemented.

This function is only used when defining a new op type. It may be
used for ops such as tf.size() that are not differentiable.  For
example:

`python
tf.no_gradient("Size")
`

The gradient computed for ‘op_type’ will then propagate zeros.

For ops that have a well-defined gradient but are not yet implemented,
no declaration should be made, and an error must be thrown if
an attempt to request its gradient is made.


	参数

	op_type – The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.



	Raises

	TypeError – If op_type is not a string.










	
tensorflow.no_op(name=None)

	Does nothing. Only useful as a placeholder for control edges.


	参数

	name – A name for the operation (optional).



	返回

	The created Operation.










	
tensorflow.nondifferentiable_batch_function(num_batch_threads, max_batch_size, batch_timeout_micros, allowed_batch_sizes=None, max_enqueued_batches=10, autograph=True)

	Batches the computation done by the decorated function.

So, for example, in the following code

```python
@batch_function(1, 2, 3)
def layer(a):


return tf.matmul(a, a)




b = layer(w)
```

if more than one session.run call is simultaneously trying to compute b
the values of w will be gathered, non-deterministically concatenated
along the first axis, and only one thread will run the computation. See the
documentation of the Batch op for more details.

Assumes that all arguments of the decorated function are Tensors which will
be batched along their first dimension.

SparseTensor is not supported. The return value of the decorated function
must be a Tensor or a list/tuple of Tensors.


	参数

	
	num_batch_threads – Number of scheduling threads for processing batches
of work. Determines the number of batches processed in parallel.


	max_batch_size – Batch sizes will never be bigger than this.


	batch_timeout_micros – Maximum number of microseconds to wait before
outputting an incomplete batch.


	allowed_batch_sizes – Optional list of allowed batch sizes. If left empty,
does nothing. Otherwise, supplies a list of batch sizes, causing the op
to pad batches up to one of those sizes. The entries must increase
monotonically, and the final entry must equal max_batch_size.


	max_enqueued_batches – The maximum depth of the batch queue. Defaults to 10.


	autograph – Whether to use autograph to compile python and eager style code
for efficient graph-mode execution.






	返回

	The decorated function will return the unbatched computation output Tensors.










	
tensorflow.norm(tensor, ord='euclidean', axis=None, keepdims=None, name=None)

	Computes the norm of vectors, matrices, and tensors.

This function can compute several different vector norms (the 1-norm, the
Euclidean or 2-norm, the inf-norm, and in general the p-norm for p > 0) and
matrix norms (Frobenius, 1-norm, 2-norm and inf-norm).


	参数

	
	tensor – Tensor of types float32, float64, complex64, complex128


	ord – Order of the norm. Supported values are ‘fro’, ‘euclidean’,
1, 2, np.inf and any positive real number yielding the corresponding
p-norm. Default is ‘euclidean’ which is equivalent to Frobenius norm if
tensor is a matrix and equivalent to 2-norm for vectors.
Some restrictions apply:



	The Frobenius norm ‘fro’ is not defined for vectors,


	If axis is a 2-tuple (matrix norm), only ‘euclidean’, ‘fro’, 1,
2, np.inf are supported.







See the description of axis on how to compute norms for a batch of
vectors or matrices stored in a tensor.




	axis – If axis is None (the default), the input is considered a vector
and a single vector norm is computed over the entire set of values in the
tensor, i.e. norm(tensor, ord=ord) is equivalent to
norm(reshape(tensor, [-1]), ord=ord).
If axis is a Python integer, the input is considered a batch of vectors,
and axis determines the axis in tensor over which to compute vector
norms.
If axis is a 2-tuple of Python integers it is considered a batch of
matrices and axis determines the axes in tensor over which to compute
a matrix norm.
Negative indices are supported. Example: If you are passing a tensor that
can be either a matrix or a batch of matrices at runtime, pass
axis=[-2,-1] instead of axis=None to make sure that matrix norms are
computed.


	keepdims – If True, the axis indicated in axis are kept with size 1.
Otherwise, the dimensions in axis are removed from the output shape.


	name – The name of the op.






	返回

	
	A Tensor of the same type as tensor, containing the vector or

	matrix norms. If keepdims is True then the rank of output is equal to
the rank of tensor. Otherwise, if axis is none the output is a scalar,
if axis is an integer, the rank of output is one less than the rank
of tensor, if axis is a 2-tuple the rank of output is two less
than the rank of tensor.









	返回类型

	output



	Raises

	ValueError – If ord or axis is invalid.





@compatibility(numpy)
Mostly equivalent to numpy.linalg.norm.
Not supported: ord <= 0, 2-norm for matrices, nuclear norm.
Other differences:



	If axis is None, treats the flattened tensor as a vector





regardless of rank.





	Explicitly supports ‘euclidean’ norm as the default, including for





higher order tensors.







@end_compatibility






	
tensorflow.not_equal(x, y, name=None)

	Returns the truth value of (x != y) element-wise.

Performs a [broadcast](
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) with the
arguments and then an element-wise inequality comparison, returning a Tensor
of boolean values.

For example:

>>> x = tf.constant([2, 4])
>>> y = tf.constant(2)
>>> tf.math.not_equal(x, y)
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([False,  True])>





>>> x = tf.constant([2, 4])
>>> y = tf.constant([2, 4])
>>> tf.math.not_equal(x, y)
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([False,  False])>






	参数

	
	x – A tf.Tensor or tf.SparseTensor or tf.IndexedSlices.


	y – A tf.Tensor or tf.SparseTensor or tf.IndexedSlices.


	name – A name for the operation (optional).






	返回

	A tf.Tensor of type bool with the same size as that of x or y.



	Raises

	tf.errors.InvalidArgumentError – If shapes of arguments are incompatible










	
tensorflow.numpy_function(func, inp, Tout, name=None)

	Wraps a python function and uses it as a TensorFlow op.

Given a python function func wrap this function as an operation in a
TensorFlow function. func must take numpy arrays as its arguments and
return numpy arrays as its outputs.

The following example creates a TensorFlow graph with np.sinh() as an
operation in the graph:

>>> def my_numpy_func(x):
...   # x will be a numpy array with the contents of the input to the
...   # tf.function
...   return np.sinh(x)
>>> @tf.function(input_signature=[tf.TensorSpec(None, tf.float32)])
... def tf_function(input):
...   y = tf.numpy_function(my_numpy_func, [input], tf.float32)
...   return y * y
>>> tf_function(tf.constant(1.))
<tf.Tensor: shape=(), dtype=float32, numpy=1.3810978>





Comparison to tf.py_function:
tf.py_function and tf.numpy_function are very similar, except that
tf.numpy_function takes numpy arrays, and not tf.Tensor`s. If you want the
function to contain `tf.Tensors, and have any TensorFlow operations executed
in the function be differentiable, please use tf.py_function.

Note: The tf.numpy_function operation has the following known
limitations:


	The body of the function (i.e. func) will not be serialized in a
tf.SavedModel. Therefore, you should not use this function if you need to
serialize your model and restore it in a different environment.


	The operation must run in the same address space as the Python program
that calls tf.numpy_function(). If you are using distributed
TensorFlow, you must run a tf.distribute.Server in the same process as the
program that calls tf.numpy_function  you must pin the created
operation to a device in that server (e.g. using with tf.device():).


	Since the function takes numpy arrays, you cannot take gradients
through a numpy_function. If you require something that is differentiable,
please consider using tf.py_function.


	The resulting function is assumed stateful and will never be optimized.





	参数

	
	func – A Python function, which accepts numpy.ndarray objects as arguments
and returns a list of numpy.ndarray objects (or a single
numpy.ndarray). This function must accept as many arguments as there are
tensors in inp, and these argument types will match the corresponding
tf.Tensor objects in inp. The returns numpy.ndarray`s must match the
number and types defined `Tout.
Important Note: Input and output numpy.ndarray`s of `func are not


guaranteed to be copies. In some cases their underlying memory will be
shared with the corresponding TensorFlow tensors. In-place modification
or storing func input or return values in python datastructures
without explicit (np.)copy can have non-deterministic consequences.







	inp – A list of tf.Tensor objects.


	Tout – A list or tuple of tensorflow data types or a single tensorflow data
type if there is only one, indicating what func returns.


	name – (Optional) A name for the operation.






	返回

	Single or list of tf.Tensor which func computes.










	
tensorflow.one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None)

	Returns a one-hot tensor.

The locations represented by indices in indices take value on_value,
while all other locations take value off_value.

on_value and off_value must have matching data types. If dtype is also
provided, they must be the same data type as specified by dtype.

If on_value is not provided, it will default to the value 1 with type
dtype

If off_value is not provided, it will default to the value 0 with type
dtype

If the input indices is rank N, the output will have rank N+1. The
new axis is created at dimension axis (default: the new axis is appended
at the end).

If indices is a scalar the output shape will be a vector of length depth

If indices is a vector of length features, the output shape will be:


	```

	features x depth if axis == -1
depth x features if axis == 0





```

If indices is a matrix (batch) with shape [batch, features], the output
shape will be:


	```

	batch x features x depth if axis == -1
batch x depth x features if axis == 1
depth x batch x features if axis == 0





```

If indices is a RaggedTensor, the ‘axis’ argument must be positive and refer
to a non-ragged axis. The output will be equivalent to applying ‘one_hot’ on
the values of the RaggedTensor, and creating a new RaggedTensor from the
result.

If dtype is not provided, it will attempt to assume the data type of
on_value or off_value, if one or both are passed in. If none of
on_value, off_value, or dtype are provided, dtype will default to the
value tf.float32.

Note: If a non-numeric data type output is desired (tf.string, tf.bool,
etc.), both on_value and off_value _must_ be provided to one_hot.

For example:

```python
indices = [0, 1, 2]
depth = 3
tf.one_hot(indices, depth)  # output: [3 x 3]
# [[1., 0., 0.],
#  [0., 1., 0.],
#  [0., 0., 1.]]

indices = [0, 2, -1, 1]
depth = 3
tf.one_hot(indices, depth,


on_value=5.0, off_value=0.0,
axis=-1)  # output: [4 x 3]




# [[5.0, 0.0, 0.0],  # one_hot(0)
#  [0.0, 0.0, 5.0],  # one_hot(2)
#  [0.0, 0.0, 0.0],  # one_hot(-1)
#  [0.0, 5.0, 0.0]]  # one_hot(1)

indices = [[0, 2], [1, -1]]
depth = 3
tf.one_hot(indices, depth,


on_value=1.0, off_value=0.0,
axis=-1)  # output: [2 x 2 x 3]




# [[[1.0, 0.0, 0.0],   # one_hot(0)
#   [0.0, 0.0, 1.0]],  # one_hot(2)
#  [[0.0, 1.0, 0.0],   # one_hot(1)
#   [0.0, 0.0, 0.0]]]  # one_hot(-1)

indices = tf.ragged.constant([[0, 1], [2]])
depth = 3
tf.one_hot(indices, depth)  # output: [2 x None x 3]
# [[[1., 0., 0.],
#   [0., 1., 0.]],
#  [[0., 0., 1.]]]
```


	参数

	
	indices – A Tensor of indices.


	depth – A scalar defining the depth of the one hot dimension.


	on_value – A scalar defining the value to fill in output when indices[j]
= i. (default: 1)


	off_value – A scalar defining the value to fill in output when indices[j]
!= i. (default: 0)


	axis – The axis to fill (default: -1, a new inner-most axis).


	dtype – The data type of the output tensor.


	name – A name for the operation (optional).






	返回

	The one-hot tensor.



	返回类型

	output



	Raises

	
	TypeError – If dtype of either on_value or off_value don’t match dtype


	TypeError – If dtype of on_value and off_value don’t match one another













	
tensorflow.ones(shape, dtype=tf.float32, name=None)

	Creates a tensor with all elements set to one (1).

See also tf.ones_like.

This operation returns a tensor of type dtype with shape shape and
all elements set to one.

>>> tf.ones([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]], dtype=int32)>






	参数

	
	shape – A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.


	dtype – Optional DType of an element in the resulting Tensor. Default is
tf.float32.


	name – Optional string. A name for the operation.






	返回

	A Tensor with all elements set to one (1).










	
tensorflow.ones_initializer

	tensorflow.python.ops.init_ops_v2.Ones 的别名






	
tensorflow.ones_like(input, dtype=None, name=None)

	Creates a tensor of all ones that has the same shape as the input.

See also tf.ones.

Given a single tensor (tensor), this operation returns a tensor of the
same type and shape as tensor with all elements set to 1. Optionally,
you can use dtype to specify a new type for the returned tensor.

For example:

>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.ones_like(tensor)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[1, 1, 1],
         [1, 1, 1]], dtype=int32)>






	参数

	
	input – A Tensor.


	dtype – A type for the returned Tensor. Must be float16, float32,
float64, int8, uint8, int16, uint16, int32, int64,
complex64, complex128, bool or string.


	name – A name for the operation (optional).






	返回

	A Tensor with all elements set to one.










	
tensorflow.pad(tensor, paddings, mode='CONSTANT', constant_values=0, name=None)

	Pads a tensor.

This operation pads a tensor according to the paddings you specify.
paddings is an integer tensor with shape [n, 2], where n is the rank of
tensor. For each dimension D of input, paddings[D, 0] indicates how
many values to add before the contents of tensor in that dimension, and
paddings[D, 1] indicates how many values to add after the contents of
tensor in that dimension. If mode is “REFLECT” then both paddings[D, 0]
and paddings[D, 1] must be no greater than tensor.dim_size(D) - 1. If
mode is “SYMMETRIC” then both paddings[D, 0] and paddings[D, 1] must be
no greater than tensor.dim_size(D).

The padded size of each dimension D of the output is:

paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]

For example:

```python
t = tf.constant([[1, 2, 3], [4, 5, 6]])
paddings = tf.constant([[1, 1,], [2, 2]])
# ‘constant_values’ is 0.
# rank of ‘t’ is 2.
tf.pad(t, paddings, “CONSTANT”)  # [[0, 0, 0, 0, 0, 0, 0],


#  [0, 0, 1, 2, 3, 0, 0],
#  [0, 0, 4, 5, 6, 0, 0],
#  [0, 0, 0, 0, 0, 0, 0]]





	tf.pad(t, paddings, “REFLECT”)  # [[6, 5, 4, 5, 6, 5, 4],

	#  [3, 2, 1, 2, 3, 2, 1],
#  [6, 5, 4, 5, 6, 5, 4],
#  [3, 2, 1, 2, 3, 2, 1]]



	tf.pad(t, paddings, “SYMMETRIC”)  # [[2, 1, 1, 2, 3, 3, 2],

	#  [2, 1, 1, 2, 3, 3, 2],
#  [5, 4, 4, 5, 6, 6, 5],
#  [5, 4, 4, 5, 6, 6, 5]]





```


	参数

	
	tensor – A Tensor.


	paddings – A Tensor of type int32.


	mode – One of “CONSTANT”, “REFLECT”, or “SYMMETRIC” (case-insensitive)


	constant_values – In “CONSTANT” mode, the scalar pad value to use. Must be
same type as tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.



	Raises

	ValueError – When mode is not one of “CONSTANT”, “REFLECT”, or “SYMMETRIC”.










	
tensorflow.parallel_stack(values, name='parallel_stack')

	Stacks a list of rank-R tensors into one rank-(R+1) tensor in parallel.

Requires that the shape of inputs be known at graph construction time.

Packs the list of tensors in values into a tensor with rank one higher than
each tensor in values, by packing them along the first dimension.
Given a list of length N of tensors of shape (A, B, C); the output
tensor will have the shape (N, A, B, C).

For example:

`python
x = tf.constant([1, 4])
y = tf.constant([2, 5])
z = tf.constant([3, 6])
tf.parallel_stack([x, y, z])  # [[1, 4], [2, 5], [3, 6]]
`

The difference between stack and parallel_stack is that stack requires
all the inputs be computed before the operation will begin but doesn’t require
that the input shapes be known during graph construction.

parallel_stack will copy pieces of the input into the output as they become
available, in some situations this can provide a performance benefit.

Unlike stack, parallel_stack does NOT support backpropagation.

This is the opposite of unstack.  The numpy equivalent is


tf.parallel_stack([x, y, z]) = np.asarray([x, y, z])





	参数

	
	values – A list of Tensor objects with the same shape and type.


	name – A name for this operation (optional).






	返回

	A stacked Tensor with the same type as values.



	返回类型

	output










	
tensorflow.pow(x, y, name=None)

	Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

`python
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y)  # [[256, 65536], [9, 27]]
`


	参数

	
	x – A Tensor of type float16, float32, float64, int32, int64,
complex64, or complex128.


	y – A Tensor of type float16, float32, float64, int32, int64,
complex64, or complex128.


	name – A name for the operation (optional).






	返回

	A Tensor.










	
tensorflow.print(*inputs, **kwargs)

	Print the specified inputs.

A TensorFlow operator that prints the specified inputs to a desired
output stream or logging level. The inputs may be dense or sparse Tensors,
primitive python objects, data structures that contain tensors, and printable
Python objects. Printed tensors will recursively show the first and last
elements of each dimension to summarize.

@compatibility(python2)
In python 2.7, make sure to import the following:
from __future__ import print_function
@end_compatibility

Example

Single-input usage:

`python
tensor = tf.range(10)
tf.print(tensor, output_stream=sys.stderr)
`

(This prints “[0 1 2 … 7 8 9]” to sys.stderr)

Multi-input usage:

`python
tensor = tf.range(10)
tf.print("tensors:", tensor, {2: tensor * 2}, output_stream=sys.stdout)
`

(This prints “tensors: [0 1 2 … 7 8 9] {2: [0 2 4 … 14 16 18]}” to
sys.stdout)

Changing the input separator:
`python
tensor_a = tf.range(2)
tensor_b = tensor_a * 2
tf.print(tensor_a, tensor_b, output_stream=sys.stderr, sep=',')
`

(This prints “[0 1],[0 2]” to sys.stderr)

Usage in a tf.function:

```python
@tf.function
def f():


tensor = tf.range(10)
tf.print(tensor, output_stream=sys.stderr)
return tensor




range_tensor = f()
```

(This prints “[0 1 2 … 7 8 9]” to sys.stderr)

@compatibility(TF 1.x Graphs and Sessions)
In graphs manually created outside of tf.function, this method returns
the created TF operator that prints the data. To make sure the
operator runs, users need to pass the produced op to
tf.compat.v1.Session’s run method, or to use the op as a control
dependency for executed ops by specifying
with tf.compat.v1.control_dependencies([print_op]).
@end_compatibility


Compatibility usage in TF 1.x graphs:

```python
sess = tf.compat.v1.Session()
with sess.as_default():


tensor = tf.range(10)
print_op = tf.print(“tensors:”, tensor, {2: tensor * 2},


output_stream=sys.stdout)





	with tf.control_dependencies([print_op]):

	tripled_tensor = tensor * 3





sess.run(tripled_tensor)




```

(This prints “tensors: [0 1 2 … 7 8 9] {2: [0 2 4 … 14 16 18]}” to
sys.stdout)





	Note: In Jupyter notebooks and colabs, tf.print prints to the notebook

	cell outputs. It will not write to the notebook kernel’s console logs.






	参数

	
	*inputs – Positional arguments that are the inputs to print. Inputs in the
printed output will be separated by spaces. Inputs may be python
primitives, tensors, data structures such as dicts and lists that may
contain tensors (with the data structures possibly nested in arbitrary
ways), and printable python objects.


	output_stream – The output stream, logging level, or file to print to.
Defaults to sys.stderr, but sys.stdout, tf.compat.v1.logging.info,
tf.compat.v1.logging.warning, tf.compat.v1.logging.error,
absl.logging.info, absl.logging.warning and absl.logging.error are also
supported. To print to a file, pass a string started with “file://”
followed by the file path, e.g., “file:///tmp/foo.out”.


	summarize – The first and last summarize elements within each dimension are
recursively printed per Tensor. If None, then the first 3 and last 3
elements of each dimension are printed for each tensor. If set to -1, it
will print all elements of every tensor.


	sep – The string to use to separate the inputs. Defaults to ” “.


	end – End character that is appended at the end the printed string.
Defaults to the newline character.


	name – A name for the operation (optional).






	返回

	None when executing eagerly. During graph tracing this returns
a TF operator that prints the specified inputs in the specified output
stream or logging level. This operator will be automatically executed
except inside of tf.compat.v1 graphs and sessions.



	Raises

	ValueError – If an unsupported output stream is specified.










	
tensorflow.py_function(func, inp, Tout, name=None)

	Wraps a python function into a TensorFlow op that executes it eagerly.

This function allows expressing computations in a TensorFlow graph as
Python functions. In particular, it wraps a Python function func
in a once-differentiable TensorFlow operation that executes it with eager
execution enabled. As a consequence, tf.py_function makes it
possible to express control flow using Python constructs (if, while,
for, etc.), instead of TensorFlow control flow constructs (tf.cond,
tf.while_loop). For example, you might use tf.py_function to
implement the log huber function:

```python
def log_huber(x, m):



	if tf.abs(x) <= m:

	return x**2



	else:

	return m**2 * (1 - 2 * tf.math.log(m) + tf.math.log(x**2))








x = tf.compat.v1.placeholder(tf.float32)
m = tf.compat.v1.placeholder(tf.float32)

y = tf.py_function(func=log_huber, inp=[x, m], Tout=tf.float32)
dy_dx = tf.gradients(y, x)[0]


	with tf.compat.v1.Session() as sess:

	# The session executes log_huber eagerly. Given the feed values below,
# it will take the first branch, so y evaluates to 1.0 and
# dy_dx evaluates to 2.0.
y, dy_dx = sess.run([y, dy_dx], feed_dict={x: 1.0, m: 2.0})





```

You can also use tf.py_function to debug your models at runtime
using Python tools, i.e., you can isolate portions of your code that
you want to debug, wrap them in Python functions and insert pdb tracepoints
or print statements as desired, and wrap those functions in
tf.py_function.

For more information on eager execution, see the
[Eager guide](https://tensorflow.org/guide/eager).

tf.py_function is similar in spirit to tf.compat.v1.py_func, but unlike
the latter, the former lets you use TensorFlow operations in the wrapped
Python function. In particular, while tf.compat.v1.py_func only runs on CPUs
and
wraps functions that take NumPy arrays as inputs and return NumPy arrays as
outputs, tf.py_function can be placed on GPUs and wraps functions
that take Tensors as inputs, execute TensorFlow operations in their bodies,
and return Tensors as outputs.

Like tf.compat.v1.py_func, tf.py_function has the following limitations
with respect to serialization and distribution:


	The body of the function (i.e. func) will not be serialized in a
GraphDef. Therefore, you should not use this function if you need to
serialize your model and restore it in a different environment.


	The operation must run in the same address space as the Python program
that calls tf.py_function(). If you are using distributed
TensorFlow, you must run a tf.distribute.Server in the same process as the
program that calls tf.py_function() and you must pin the created
operation to a device in that server (e.g. using with tf.device():).





	参数

	
	func – A Python function which accepts a list of Tensor objects having
element types that match the corresponding tf.Tensor objects in inp
and returns a list of Tensor objects (or a single Tensor, or None)
having element types that match the corresponding values in Tout.


	inp – A list of Tensor objects.


	Tout – A list or tuple of tensorflow data types or a single tensorflow data
type if there is only one, indicating what func returns; an empty list
if no value is returned (i.e., if the return value is None).


	name – A name for the operation (optional).






	返回

	A list of Tensor or a single Tensor which func computes; an empty list
if func returns None.










	
tensorflow.random_normal_initializer

	tensorflow.python.ops.init_ops_v2.RandomNormal 的别名






	
tensorflow.random_uniform_initializer

	tensorflow.python.ops.init_ops_v2.RandomUniform 的别名






	
tensorflow.range(start, limit=None, delta=1, dtype=None, name='range')

	Creates a sequence of numbers.

Creates a sequence of numbers that begins at start and extends by
increments of delta up to but not including limit.

The dtype of the resulting tensor is inferred from the inputs unless
it is provided explicitly.

Like the Python builtin range, start defaults to 0, so that
range(n) = range(0, n).

For example:

>>> start = 3
>>> limit = 18
>>> delta = 3
>>> tf.range(start, limit, delta)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([ 3,  6,  9, 12, 15], dtype=int32)>





>>> start = 3
>>> limit = 1
>>> delta = -0.5
>>> tf.range(start, limit, delta)
<tf.Tensor: shape=(4,), dtype=float32,
numpy=array([3. , 2.5, 2. , 1.5], dtype=float32)>





>>> limit = 5
>>> tf.range(limit)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([0, 1, 2, 3, 4], dtype=int32)>






	参数

	
	start – A 0-D Tensor (scalar). Acts as first entry in the range if limit
is not None; otherwise, acts as range limit and first entry defaults to 0.


	limit – A 0-D Tensor (scalar). Upper limit of sequence, exclusive. If None,
defaults to the value of start while the first entry of the range
defaults to 0.


	delta – A 0-D Tensor (scalar). Number that increments start. Defaults to
1.


	dtype – The type of the elements of the resulting tensor.


	name – A name for the operation. Defaults to “range”.






	返回

	An 1-D Tensor of type dtype.





@compatibility(numpy)
Equivalent to np.arange
@end_compatibility






	
tensorflow.rank(input, name=None)

	Returns the rank of a tensor.

Returns a 0-D int32 Tensor representing the rank of input.

For example:

`python
# shape of tensor 't' is [2, 2, 3]
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
tf.rank(t)  # 3
`

Note: The rank of a tensor is not the same as the rank of a matrix. The
rank of a tensor is the number of indices required to uniquely select each
element of the tensor. Rank is also known as “order”, “degree”, or “ndims.”


	参数

	
	input – A Tensor or SparseTensor.


	name – A name for the operation (optional).






	返回

	A Tensor of type int32.





@compatibility(numpy)
Equivalent to np.ndim
@end_compatibility






	
tensorflow.realdiv(x, y, name=None)

	Returns x / y element-wise for real types.

If x and y are reals, this will return the floating-point division.

NOTE: Div supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.recompute_grad(f)

	An eager-compatible version of recompute_grad.

For f(*args, **kwargs), this supports gradients with respect to args or
kwargs, but kwargs are currently only supported in eager-mode.
Note that for keras layer and model objects, this is handled automatically.

Warning: If f was originally a tf.keras Model or Layer object, g will not
be able to access the member variables of that object, because g returns
through the wrapper function inner.  When recomputing gradients through
objects that inherit from keras, we suggest keeping a reference to the
underlying object around for the purpose of accessing these variables.


	参数

	f – function f(*x) that returns a Tensor or sequence of Tensor outputs.



	返回

	A function g that wraps f, but which recomputes f on the backwards
pass of a gradient call.










	
tensorflow.reduce_all(input_tensor, axis=None, keepdims=False, name=None)

	Computes the “logical and” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

`python
x = tf.constant([[True,  True], [False, False]])
tf.reduce_all(x)  # False
tf.reduce_all(x, 0)  # [False, False]
tf.reduce_all(x, 1)  # [True, False]
`


	参数

	
	input_tensor – The boolean tensor to reduce.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.





@compatibility(numpy)
Equivalent to np.all
@end_compatibility






	
tensorflow.reduce_any(input_tensor, axis=None, keepdims=False, name=None)

	Computes the “logical or” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

`python
x = tf.constant([[True,  True], [False, False]])
tf.reduce_any(x)  # True
tf.reduce_any(x, 0)  # [True, True]
tf.reduce_any(x, 1)  # [True, False]
`


	参数

	
	input_tensor – The boolean tensor to reduce.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.





@compatibility(numpy)
Equivalent to np.any
@end_compatibility






	
tensorflow.reduce_logsumexp(input_tensor, axis=None, keepdims=False, name=None)

	Computes log(sum(exp(elements across dimensions of a tensor))).

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

This function is more numerically stable than log(sum(exp(input))). It avoids
overflows caused by taking the exp of large inputs and underflows caused by
taking the log of small inputs.

For example:

`python
x = tf.constant([[0., 0., 0.], [0., 0., 0.]])
tf.reduce_logsumexp(x)  # log(6)
tf.reduce_logsumexp(x, 0)  # [log(2), log(2), log(2)]
tf.reduce_logsumexp(x, 1)  # [log(3), log(3)]
tf.reduce_logsumexp(x, 1, keepdims=True)  # [[log(3)], [log(3)]]
tf.reduce_logsumexp(x, [0, 1])  # log(6)
`


	参数

	
	input_tensor – The tensor to reduce. Should have numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.










	
tensorflow.reduce_max(input_tensor, axis=None, keepdims=False, name=None)

	Computes the maximum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.

Usage example:

>>> x = tf.constant([5, 1, 2, 4])
>>> print(tf.reduce_max(x))
tf.Tensor(5, shape=(), dtype=int32)
>>> x = tf.constant([-5, -1, -2, -4])
>>> print(tf.reduce_max(x))
tf.Tensor(-1, shape=(), dtype=int32)
>>> x = tf.constant([4, float('nan')])
>>> print(tf.reduce_max(x))
tf.Tensor(4.0, shape=(), dtype=float32)
>>> x = tf.constant([float('nan'), float('nan')])
>>> print(tf.reduce_max(x))
tf.Tensor(-inf, shape=(), dtype=float32)
>>> x = tf.constant([float('-inf'), float('inf')])
>>> print(tf.reduce_max(x))
tf.Tensor(inf, shape=(), dtype=float32)





See the numpy docs for np.amax and np.nanmax behavior.


	参数

	
	input_tensor – The tensor to reduce. Should have real numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.










	
tensorflow.reduce_mean(input_tensor, axis=None, keepdims=False, name=None)

	Computes the mean of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis by computing the
mean of elements across the dimensions in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions are retained
with length 1.

If axis is None, all dimensions are reduced, and a tensor with a single
element is returned.

For example:

>>> x = tf.constant([[1., 1.], [2., 2.]])
>>> tf.reduce_mean(x)
<tf.Tensor: shape=(), dtype=float32, numpy=1.5>
>>> tf.reduce_mean(x, 0)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([1.5, 1.5], dtype=float32)>
>>> tf.reduce_mean(x, 1)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([1., 2.], dtype=float32)>






	参数

	
	input_tensor – The tensor to reduce. Should have numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.





@compatibility(numpy)
Equivalent to np.mean

Please note that np.mean has a dtype parameter that could be used to
specify the output type. By default this is dtype=float64. On the other
hand, tf.reduce_mean has an aggressive type inference from input_tensor,
for example:

>>> x = tf.constant([1, 0, 1, 0])
>>> tf.reduce_mean(x)
<tf.Tensor: shape=(), dtype=int32, numpy=0>
>>> y = tf.constant([1., 0., 1., 0.])
>>> tf.reduce_mean(y)
<tf.Tensor: shape=(), dtype=float32, numpy=0.5>





@end_compatibility






	
tensorflow.reduce_min(input_tensor, axis=None, keepdims=False, name=None)

	Computes the minimum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.


	参数

	
	input_tensor – The tensor to reduce. Should have real numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.






	For example:

	>>> a = tf.constant([[1, 2], [3, 4]])
>>> tf.reduce_min(a)
<tf.Tensor: shape=(), dtype=int32, numpy=1>









@compatibility(numpy)
Equivalent to np.min
@end_compatibility






	
tensorflow.reduce_prod(input_tensor, axis=None, keepdims=False, name=None)

	Computes the product of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.


	参数

	
	input_tensor – The tensor to reduce. Should have numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.





@compatibility(numpy)
Equivalent to np.prod
@end_compatibility






	
tensorflow.reduce_sum(input_tensor, axis=None, keepdims=False, name=None)

	Computes the sum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

`python
x = tf.constant([[1, 1, 1], [1, 1, 1]])
tf.reduce_sum(x)  # 6
tf.reduce_sum(x, 0)  # [2, 2, 2]
tf.reduce_sum(x, 1)  # [3, 3]
tf.reduce_sum(x, 1, keepdims=True)  # [[3], [3]]
tf.reduce_sum(x, [0, 1])  # 6
`


	参数

	
	input_tensor – The tensor to reduce. Should have numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor, of the same dtype as the input_tensor.





@compatibility(numpy)
Equivalent to np.sum apart the fact that numpy upcast uint8 and int32 to
int64 while tensorflow returns the same dtype as the input.
@end_compatibility






	
tensorflow.register_tensor_conversion_function(base_type, conversion_func, priority=100)

	Registers a function for converting objects of base_type to Tensor.

The conversion function must have the following signature:


	```python

	
	def conversion_func(value, dtype=None, name=None, as_ref=False):

	# …









```

It must return a Tensor with the given dtype if specified. If the
conversion function creates a new Tensor, it should use the given
name if specified. All exceptions will be propagated to the caller.

The conversion function may return NotImplemented for some
inputs. In this case, the conversion process will continue to try
subsequent conversion functions.

If as_ref is true, the function must return a Tensor reference,
such as a Variable.

NOTE: The conversion functions will execute in order of priority,
followed by order of registration. To ensure that a conversion function
F runs before another conversion function G, ensure that F is
registered with a smaller priority than G.


	参数

	
	base_type – The base type or tuple of base types for all objects that
conversion_func accepts.


	conversion_func – A function that converts instances of base_type to
Tensor.


	priority – Optional integer that indicates the priority for applying this
conversion function. Conversion functions with smaller priority values run
earlier than conversion functions with larger priority values. Defaults to
100.






	Raises

	TypeError – If the arguments do not have the appropriate type.










	
tensorflow.repeat(input, repeats, axis=None, name=None)

	Repeat elements of input.

See also tf.concat, tf.stack, tf.tile.


	参数

	
	input – An N-dimensional Tensor.


	repeats – An 1-D int Tensor. The number of repetitions for each element.
repeats is broadcasted to fit the shape of the given axis. len(repeats)
must equal input.shape[axis] if axis is not None.


	axis – An int. The axis along which to repeat values. By default (axis=None),
use the flattened input array, and return a flat output array.


	name – A name for the operation.






	返回

	
	A Tensor which has the same shape as input, except along the given axis.

	If axis is None then the output array is flattened to match the flattened
input array.











Example usage:

>>> repeat(['a', 'b', 'c'], repeats=[3, 0, 2], axis=0)
<tf.Tensor: shape=(5,), dtype=string,
numpy=array([b'a', b'a', b'a', b'c', b'c'], dtype=object)>





>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=0)
<tf.Tensor: shape=(5, 2), dtype=int32, numpy=
array([[1, 2],
       [1, 2],
       [3, 4],
       [3, 4],
       [3, 4]], dtype=int32)>





>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=1)
<tf.Tensor: shape=(2, 5), dtype=int32, numpy=
array([[1, 1, 2, 2, 2],
       [3, 3, 4, 4, 4]], dtype=int32)>





>>> repeat(3, repeats=4)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([3, 3, 3, 3], dtype=int32)>





>>> repeat([[1,2], [3,4]], repeats=2)
<tf.Tensor: shape=(8,), dtype=int32,
numpy=array([1, 1, 2, 2, 3, 3, 4, 4], dtype=int32)>










	
tensorflow.required_space_to_batch_paddings(input_shape, block_shape, base_paddings=None, name=None)

	Calculate padding required to make block_shape divide input_shape.

This function can be used to calculate a suitable paddings argument for use
with space_to_batch_nd and batch_to_space_nd.


	参数

	
	input_shape – int32 Tensor of shape [N].


	block_shape – int32 Tensor of shape [N].


	base_paddings – Optional int32 Tensor of shape [N, 2].  Specifies the minimum
amount of padding to use.  All elements must be >= 0.  If not specified,
defaults to 0.


	name – string.  Optional name prefix.






	返回

	paddings and crops are int32 Tensors of rank 2 and shape [N, 2]
satisfying:


paddings[i, 0] = base_paddings[i, 0].
0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i]
(input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0

crops[i, 0] = 0
crops[i, 1] = paddings[i, 1] - base_paddings[i, 1]








	返回类型

	(paddings, crops), where





Raises: ValueError if called with incompatible shapes.






	
tensorflow.reshape(tensor, shape, name=None)

	Reshapes a tensor.

Given tensor, this operation returns a new tf.Tensor that has the same
values as tensor in the same order, except with a new shape given by
shape.

>>> t1 = [[1, 2, 3],
...       [4, 5, 6]]
>>> print(tf.shape(t1).numpy())
[2 3]
>>> t2 = tf.reshape(t1, [6])
>>> t2
<tf.Tensor: shape=(6,), dtype=int32,
  numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
>>> tf.reshape(t2, [3, 2])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
  array([[1, 2],
         [3, 4],
         [5, 6]], dtype=int32)>





The tf.reshape does not change the order of or the total number of elements
in the tensor, and so it can reuse the underlying data buffer. This makes it
a fast operation independent of how big of a tensor it is operating on.

>>> tf.reshape([1, 2, 3], [2, 2])
Traceback (most recent call last):
...
InvalidArgumentError: Input to reshape is a tensor with 3 values, but the
requested shape has 4





To instead reorder the data to rearrange the dimensions of a tensor, see
tf.transpose.

>>> t = [[1, 2, 3],
...      [4, 5, 6]]
>>> tf.reshape(t, [3, 2]).numpy()
array([[1, 2],
       [3, 4],
       [5, 6]], dtype=int32)
>>> tf.transpose(t, perm=[1, 0]).numpy()
array([[1, 4],
       [2, 5],
       [3, 6]], dtype=int32)





If one component of shape is the special value -1, the size of that
dimension is computed so that the total size remains constant.  In particular,
a shape of [-1] flattens into 1-D.  At most one component of shape can
be -1.

>>> t = [[1, 2, 3],
...      [4, 5, 6]]
>>> tf.reshape(t, [-1])
<tf.Tensor: shape=(6,), dtype=int32,
  numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
>>> tf.reshape(t, [3, -1])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
  array([[1, 2],
         [3, 4],
         [5, 6]], dtype=int32)>
>>> tf.reshape(t, [-1, 2])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
  array([[1, 2],
         [3, 4],
         [5, 6]], dtype=int32)>





tf.reshape(t, []) reshapes a tensor t with one element to a scalar.

>>> tf.reshape([7], []).numpy()
7





More examples:

>>> t = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print(tf.shape(t).numpy())
[9]
>>> tf.reshape(t, [3, 3])
<tf.Tensor: shape=(3, 3), dtype=int32, numpy=
  array([[1, 2, 3],
         [4, 5, 6],
         [7, 8, 9]], dtype=int32)>





>>> t = [[[1, 1], [2, 2]],
...      [[3, 3], [4, 4]]]
>>> print(tf.shape(t).numpy())
[2 2 2]
>>> tf.reshape(t, [2, 4])
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
  array([[1, 1, 2, 2],
         [3, 3, 4, 4]], dtype=int32)>





>>> t = [[[1, 1, 1],
...       [2, 2, 2]],
...      [[3, 3, 3],
...       [4, 4, 4]],
...      [[5, 5, 5],
...       [6, 6, 6]]]
>>> print(tf.shape(t).numpy())
[3 2 3]
>>> # Pass '[-1]' to flatten 't'.
>>> tf.reshape(t, [-1])
<tf.Tensor: shape=(18,), dtype=int32,
  numpy=array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6],
  dtype=int32)>
>>> # -- Using -1 to infer the shape --
>>> # Here -1 is inferred to be 9:
>>> tf.reshape(t, [2, -1])
<tf.Tensor: shape=(2, 9), dtype=int32, numpy=
  array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
         [4, 4, 4, 5, 5, 5, 6, 6, 6]], dtype=int32)>
>>> # -1 is inferred to be 2:
>>> tf.reshape(t, [-1, 9])
<tf.Tensor: shape=(2, 9), dtype=int32, numpy=
  array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
         [4, 4, 4, 5, 5, 5, 6, 6, 6]], dtype=int32)>
>>> # -1 is inferred to be 3:
>>> tf.reshape(t, [ 2, -1, 3])
<tf.Tensor: shape=(2, 3, 3), dtype=int32, numpy=
  array([[[1, 1, 1],
          [2, 2, 2],
          [3, 3, 3]],
         [[4, 4, 4],
          [5, 5, 5],
          [6, 6, 6]]], dtype=int32)>






	参数

	
	tensor – A Tensor.


	shape – A Tensor. Must be one of the following types: int32, int64.
Defines the shape of the output tensor.


	name – Optional string. A name for the operation.






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.reverse(tensor, axis, name=None)

	Reverses specific dimensions of a tensor.

NOTE tf.reverse has now changed behavior in preparation for 1.0.
tf.reverse_v2 is currently an alias that will be deprecated before TF 1.0.

Given a tensor, and a int32 tensor axis representing the set of
dimensions of tensor to reverse. This operation reverses each dimension
i for which there exists j s.t. axis[j] == i.

tensor can have up to 8 dimensions. The number of dimensions specified
in axis may be 0 or more entries. If an index is specified more than
once, a InvalidArgument error is raised.

For example:

```
# tensor ‘t’ is [[[[ 0,  1,  2,  3],
#                  [ 4,  5,  6,  7],
#                  [ 8,  9, 10, 11]],
#                 [[12, 13, 14, 15],
#                  [16, 17, 18, 19],
#                  [20, 21, 22, 23]]]]
# tensor ‘t’ shape is [1, 2, 3, 4]

# ‘dims’ is [3] or ‘dims’ is [-1]
reverse(t, dims) ==> [[[[ 3,  2,  1,  0],



[ 7,  6,  5,  4],
[ 11, 10, 9, 8]],





	[[15, 14, 13, 12],

	[19, 18, 17, 16],
[23, 22, 21, 20]]]]








# ‘dims’ is ‘[1]’ (or ‘dims’ is ‘[-3]’)
reverse(t, dims) ==> [[[[12, 13, 14, 15],



[16, 17, 18, 19],
[20, 21, 22, 23]





	[[ 0,  1,  2,  3],

	[ 4,  5,  6,  7],
[ 8,  9, 10, 11]]]]








# ‘dims’ is ‘[2]’ (or ‘dims’ is ‘[-2]’)
reverse(t, dims) ==> [[[[8, 9, 10, 11],



[4, 5, 6, 7],
[0, 1, 2, 3]]





	[[20, 21, 22, 23],

	[16, 17, 18, 19],
[12, 13, 14, 15]]]]








```


	参数

	
	tensor – A Tensor. Must be one of the following types: uint8, int8, uint16, int16, int32, int64, bool, bfloat16, half, float32, float64, complex64, complex128, string.
Up to 8-D.


	axis – A Tensor. Must be one of the following types: int32, int64.
1-D. The indices of the dimensions to reverse. Must be in the range
[-rank(tensor), rank(tensor)).


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.reverse_sequence(input, seq_lengths, seq_axis=None, batch_axis=None, name=None)

	Reverses variable length slices. (deprecated arguments) (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (seq_dim). They will be removed in a future version.
Instructions for updating:
seq_dim is deprecated, use seq_axis instead

Warning: SOME ARGUMENTS ARE DEPRECATED: (batch_dim). They will be removed in a future version.
Instructions for updating:
batch_dim is deprecated, use batch_axis instead

This op first slices input along the dimension batch_axis, and for
each slice i, reverses the first seq_lengths[i] elements along the
dimension seq_axis.

The elements of seq_lengths must obey seq_lengths[i] <=
input.dims[seq_dim], and seq_lengths must be a vector of length
input.dims[batch_dim].

The output slice i along dimension batch_axis is then given by
input slice i, with the first seq_lengths[i] slices along
dimension seq_axis reversed.

Example usage:

>>> seq_lengths = [7, 2, 3, 5]
>>> input = [[1, 2, 3, 4, 5, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0],
...          [1, 2, 3, 4, 0, 0, 0, 0], [1, 2, 3, 4, 5, 6, 7, 8]]
>>> output = tf.reverse_sequence(input, seq_lengths, seq_axis=1, batch_axis=0)
>>> output
<tf.Tensor: shape=(4, 8), dtype=int32, numpy=
array([[0, 0, 5, 4, 3, 2, 1, 0],
       [2, 1, 0, 0, 0, 0, 0, 0],
       [3, 2, 1, 4, 0, 0, 0, 0],
       [5, 4, 3, 2, 1, 6, 7, 8]], dtype=int32)>






	参数

	
	input – A Tensor. The input to reverse.


	seq_lengths – A Tensor. Must be one of the following types: int32,
int64. 1-D with length input.dims(batch_dim) and max(seq_lengths) <=
input.dims(seq_dim)


	seq_axis – An int. The dimension which is partially reversed.


	batch_axis – An optional int. Defaults to 0. The dimension along which
reversal is performed.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.roll(input, shift, axis, name=None)

	Rolls the elements of a tensor along an axis.

The elements are shifted positively (towards larger indices) by the offset of
shift along the dimension of axis. Negative shift values will shift
elements in the opposite direction. Elements that roll passed the last position
will wrap around to the first and vice versa. Multiple shifts along multiple
axes may be specified.

For example:

```
# ‘t’ is [0, 1, 2, 3, 4]
roll(t, shift=2, axis=0) ==> [3, 4, 0, 1, 2]

# shifting along multiple dimensions
# ‘t’ is [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
roll(t, shift=[1, -2], axis=[0, 1]) ==> [[7, 8, 9, 5, 6], [2, 3, 4, 0, 1]]

# shifting along the same axis multiple times
# ‘t’ is [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
roll(t, shift=[2, -3], axis=[1, 1]) ==> [[1, 2, 3, 4, 0], [6, 7, 8, 9, 5]]
```


	参数

	
	input – A Tensor.


	shift – A Tensor. Must be one of the following types: int32, int64.
Dimension must be 0-D or 1-D. shift[i] specifies the number of places by which
elements are shifted positively (towards larger indices) along the dimension
specified by axis[i]. Negative shifts will roll the elements in the opposite
direction.


	axis – A Tensor. Must be one of the following types: int32, int64.
Dimension must be 0-D or 1-D. axis[i] specifies the dimension that the shift
shift[i] should occur. If the same axis is referenced more than once, the
total shift for that axis will be the sum of all the shifts that belong to that
axis.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.round(x, name=None)

	Rounds the values of a tensor to the nearest integer, element-wise.

Rounds half to even.  Also known as bankers rounding. If you want to round
according to the current system rounding mode use tf::cint.
For example:

`python
x = tf.constant([0.9, 2.5, 2.3, 1.5, -4.5])
tf.round(x)  # [ 1.0, 2.0, 2.0, 2.0, -4.0 ]
`


	参数

	
	x – A Tensor of type float16, float32, float64, int32, or int64.


	name – A name for the operation (optional).






	返回

	A Tensor of same shape and type as x.










	
tensorflow.saturate_cast(value, dtype, name=None)

	Performs a safe saturating cast of value to dtype.

This function casts the input to dtype without applying any scaling.  If
there is a danger that values would over or underflow in the cast, this op
applies the appropriate clamping before the cast.


	参数

	
	value – A Tensor.


	dtype – The desired output DType.


	name – A name for the operation (optional).






	返回

	value safely cast to dtype.










	
tensorflow.scalar_mul(scalar, x, name=None)

	Multiplies a scalar times a Tensor or IndexedSlices object.

Intended for use in gradient code which might deal with IndexedSlices
objects, which are easy to multiply by a scalar but more expensive to
multiply with arbitrary tensors.


	参数

	
	scalar – A 0-D scalar Tensor. Must have known shape.


	x – A Tensor or IndexedSlices to be scaled.


	name – A name for the operation (optional).






	返回

	scalar * x of the same type (Tensor or IndexedSlices) as x.



	Raises

	ValueError – if scalar is not a 0-D scalar.










	
tensorflow.scan(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, infer_shape=True, reverse=False, name=None)

	scan on the list of tensors unpacked from elems on dimension 0. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.scan(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.scan(fn, elems))

The simplest version of scan repeatedly applies the callable fn to a
sequence of elements from first to last. The elements are made of the tensors
unpacked from elems on dimension 0. The callable fn takes two tensors as
arguments. The first argument is the accumulated value computed from the
preceding invocation of fn, and the second is the value at the current
position of elems. If initializer is None, elems must contain at least
one element, and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is [len(values)] + fn(initializer, values[0]).shape.
If reverse=True, it’s fn(initializer, values[-1]).shape.

This method also allows multi-arity elems and accumulator.  If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension.  The second argument of
fn must match the structure of elems.

If no initializer is provided, the output structure and dtypes of fn
are assumed to be the same as its input; and in this case, the first
argument of fn must match the structure of elems.

If an initializer is provided, then the output of fn must have the same
structure as initializer; and the first argument of fn must match
this structure.

For example, if elems is (t1, [t2, t3]) and initializer is
[i1, i2] then an appropriate signature for fn in python2 is:
fn = lambda (acc_p1, acc_p2), (t1, [t2, t3]): and fn must return a list,
[acc_n1, acc_n2].  An alternative correct signature for fn, and the


one that works in python3, is:




fn = lambda a, t:, where a and t correspond to the input tuples.


	参数

	
	fn – The callable to be performed.  It accepts two arguments.  The first will
have the same structure as initializer if one is provided, otherwise it
will have the same structure as elems.  The second will have the same
(possibly nested) structure as elems.  Its output must have the same
structure as initializer if one is provided, otherwise it must have the
same structure as elems.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension.  The nested sequence of the
resulting slices will be the first argument to fn.


	initializer – (optional) A tensor or (possibly nested) sequence of tensors,
initial value for the accumulator, and the expected output type of fn.


	parallel_iterations – (optional) The number of iterations allowed to run in
parallel.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – (optional) True enables GPU-CPU memory swapping.


	infer_shape – (optional) False disables tests for consistent output shapes.


	reverse – (optional) True scans the tensor last to first (instead of first to
last).


	name – (optional) Name prefix for the returned tensors.






	返回

	A tensor or (possibly nested) sequence of tensors.  Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, and the previous accumulator value(s), from first to last (or
last to first, if reverse=True).



	Raises

	
	TypeError – if fn is not callable or the structure of the output of
fn and initializer do not match.


	ValueError – if the lengths of the output of fn and initializer
do not match.








实际案例

`python
elems = np.array([1, 2, 3, 4, 5, 6])
sum = scan(lambda a, x: a + x, elems)
# sum == [1, 3, 6, 10, 15, 21]
sum = scan(lambda a, x: a + x, elems, reverse=True)
# sum == [21, 20, 18, 15, 11, 6]
`

```python
elems = np.array([1, 2, 3, 4, 5, 6])
initializer = np.array(0)
sum_one = scan(


lambda a, x: x[0] - x[1] + a, (elems + 1, elems), initializer)




# sum_one == [1, 2, 3, 4, 5, 6]
```

`python
elems = np.array([1, 0, 0, 0, 0, 0])
initializer = (np.array(0), np.array(1))
fibonaccis = scan(lambda a, _: (a[1], a[0] + a[1]), elems, initializer)
# fibonaccis == ([1, 1, 2, 3, 5, 8], [1, 2, 3, 5, 8, 13])
`






	
tensorflow.scatter_nd(indices, updates, shape, name=None)

	Scatter updates into a new tensor according to indices.

Creates a new tensor by applying sparse updates to individual values or
slices within a tensor (initially zero for numeric, empty for string) of
the given shape according to indices.  This operator is the inverse of the
tf.gather_nd operator which extracts values or slices from a given tensor.

This operation is similar to tensor_scatter_add, except that the tensor is
zero-initialized. Calling tf.scatter_nd(indices, values, shape) is identical
to tensor_scatter_add(tf.zeros(shape, values.dtype), indices, values)

If indices contains duplicates, then their updates are accumulated (summed).

WARNING: The order in which updates are applied is nondeterministic, so the
output will be nondeterministic if indices contains duplicates – because
of some numerical approximation issues, numbers summed in different order
may yield different results.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:


indices.shape[-1] <= shape.rank




The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape


indices.shape[:-1] + shape[indices.shape[-1]:]




The simplest form of scatter is to insert individual elements in a tensor by
index. For example, say we want to insert 4 scattered elements in a rank-1
tensor with 8 elements.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/ScatterNd1.png” alt>
</div>

In Python, this scatter operation would look like this:


	```python

	indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
shape = tf.constant([8])
scatter = tf.scatter_nd(indices, updates, shape)
print(scatter)





```

The resulting tensor would look like this:


[0, 11, 0, 10, 9, 0, 0, 12]




We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/ScatterNd2.png” alt>
</div>

In Python, this scatter operation would look like this:


	```python

	indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],



[7, 7, 7, 7], [8, 8, 8, 8]],





	[[5, 5, 5, 5], [6, 6, 6, 6],

	[7, 7, 7, 7], [8, 8, 8, 8]]])








shape = tf.constant([4, 4, 4])
scatter = tf.scatter_nd(indices, updates, shape)
print(scatter)





```

The resulting tensor would look like this:



	[[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],

	[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]








Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.


	参数

	
	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	updates – A Tensor. Updates to scatter into output.


	shape – A Tensor. Must have the same type as indices.
1-D. The shape of the resulting tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as updates.










	
tensorflow.searchsorted(sorted_sequence, values, side='left', out_type=tf.int32, name=None)

	Searches input tensor for values on the innermost dimension.

A 2-D example:


	```

	
	sorted_sequence = [[0, 3, 9, 9, 10],

	[1, 2, 3, 4, 5]]



	values = [[2, 4, 9],

	[0, 2, 6]]





result = searchsorted(sorted_sequence, values, side=”left”)


	result == [[1, 2, 2],

	[0, 1, 5]]





result = searchsorted(sorted_sequence, values, side=”right”)


	result == [[1, 2, 4],

	[0, 2, 5]]









```


	参数

	
	sorted_sequence – N-D Tensor containing a sorted sequence.


	values – N-D Tensor containing the search values.


	side – ‘left’ or ‘right’; ‘left’ corresponds to lower_bound and ‘right’ to
upper_bound.


	out_type – The output type (int32 or int64).  Default is tf.int32.


	name – Optional name for the operation.






	返回

	An N-D Tensor the size of values containing the result of applying either
lower_bound or upper_bound (depending on side) to each value.  The result
is not a global index to the entire Tensor, but the index in the last
dimension.



	Raises

	ValueError – If the last dimension of sorted_sequence >= 2^31-1 elements.
If the total size of values exceeds 2^31 - 1 elements.
If the first N-1 dimensions of the two tensors don’t match.










	
tensorflow.sequence_mask(lengths, maxlen=None, dtype=tf.bool, name=None)

	Returns a mask tensor representing the first N positions of each cell.

If lengths has shape [d_1, d_2, …, d_n] the resulting tensor mask has
dtype dtype and shape [d_1, d_2, …, d_n, maxlen], with

`
mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])
`

Examples:

```python
tf.sequence_mask([1, 3, 2], 5)  # [[True, False, False, False, False],


#  [True, True, True, False, False],
#  [True, True, False, False, False]]





	tf.sequence_mask([[1, 3],[2,0]])  # [[[True, False, False],

	#   [True, True, True]],
#  [[True, True, False],
#   [False, False, False]]]





```


	参数

	
	lengths – integer tensor, all its values <= maxlen.


	maxlen – scalar integer tensor, size of last dimension of returned tensor.
Default is the maximum value in lengths.


	dtype – output type of the resulting tensor.


	name – name of the op.






	返回

	A mask tensor of shape lengths.shape + (maxlen,), cast to specified dtype.



	Raises

	ValueError – if maxlen is not a scalar.










	
tensorflow.shape(input, out_type=tf.int32, name=None)

	Returns the shape of a tensor.

See also tf.size.

This operation returns a 1-D integer tensor representing the shape of input.
This represents the minimal set of known information at definition time.

For example:

>>> t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
>>> tf.shape(t)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([2, 2, 3], dtype=int32)>
>>> tf.shape(t).numpy()
array([2, 2, 3], dtype=int32)





Note: When using symbolic tensors, such as when using the Keras functional
API, tf.shape() will return the shape of the symbolic tensor.

>>> a = tf.keras.layers.Input((None, 10))
>>> tf.shape(a)
<tf.Tensor ... shape=(3,) dtype=int32>





In these cases, using tf.Tensor.shape will return more informative results.

>>> a.shape
TensorShape([None, None, 10])





tf.shape and Tensor.shape should be identical in eager mode.  Within
tf.function or within a compat.v1 context, not all dimensions may be
known until execution time.


	参数

	
	input – A Tensor or SparseTensor.


	out_type – (Optional) The specified output type of the operation (int32 or
int64). Defaults to tf.int32.


	name – A name for the operation (optional).






	返回

	A Tensor of type out_type.










	
tensorflow.shape_n(input, out_type=tf.int32, name=None)

	Returns shape of tensors.


	参数

	
	input – A list of at least 1 Tensor object with the same type.


	out_type – The specified output type of the operation (int32 or int64).
Defaults to `tf.int32`(optional).


	name – A name for the operation (optional).






	返回

	
	A list with the same length as input of Tensor objects with

	type out_type.
















	
tensorflow.sigmoid(x, name=None)

	Computes sigmoid of x element-wise.

Formula for calculating sigmoid(x): y = 1 / (1 + exp(-x)).

For x in (-inf, inf) => sigmoid(x) in (0, 1)

Example Usage:

If a positive number is large, then its sigmoid will approach to 1 since the
formula will be y = <large_num> / (1 + <large_num>)

>>> x = tf.constant([0.0, 1.0, 50.0, 100.0])
>>> tf.math.sigmoid(x)
<tf.Tensor: shape=(4,), dtype=float32,
numpy=array([0.5      , 0.7310586, 1.       , 1.       ], dtype=float32)>





If a negative number is large, its sigmoid will approach to 0 since the
formula will be y = 1 / (1 + <large_num>)

>>> x = tf.constant([-100.0, -50.0, -1.0, 0.0])
>>> tf.math.sigmoid(x)
<tf.Tensor: shape=(4,), dtype=float32, numpy=
array([0.0000000e+00, 1.9287499e-22, 2.6894143e-01, 0.5],
      dtype=float32)>






	参数

	
	x – A Tensor with type float16, float32, float64, complex64, or
complex128.


	name – A name for the operation (optional).






	返回

	A Tensor with the same type as x.





Usage Example:

>>> x = tf.constant([-128.0, 0.0, 128.0], dtype=tf.float32)
>>> tf.sigmoid(x)
<tf.Tensor: shape=(3,), dtype=float32,
numpy=array([0. , 0.5, 1. ], dtype=float32)>





@compatibility(scipy)
Equivalent to scipy.special.expit
@end_compatibility






	
tensorflow.sign(x, name=None)

	Returns an element-wise indication of the sign of a number.

y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0.

For complex numbers, y = sign(x) = x / |x| if x != 0, otherwise y = 0.

Example usage:

>>> tf.math.sign([0., 2., -3.])
<tf.Tensor: ... numpy=array([ 0.,  1., -1.], dtype=float32)>






	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32,
float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.


	If x is a SparseTensor, returns SparseTensor(x.indices,

	
tf.math.sign(x.values, …), x.dense_shape).




If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.sign(x.values, …), x.dense_shape)
















	
tensorflow.sin(x, name=None)

	Computes sine of x element-wise.


Given an input tensor, this function computes sine of every
element in the tensor. Input range is (-inf, inf) and
output range is [-1,1].

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10, float("inf")])
tf.math.sin(x) ==> [nan -0.4121185 -0.47942555 0.84147096 0.9320391 -0.87329733 -0.54402107 nan]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.sinh(x, name=None)

	Computes hyperbolic sine of x element-wise.


Given an input tensor, this function computes hyperbolic sine of every
element in the tensor. Input range is [-inf,inf] and output range
is [-inf,inf].

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 2, 10, float("inf")])
tf.math.sinh(x) ==> [-inf -4.0515420e+03 -5.2109528e-01 1.1752012e+00 1.5094614e+00 3.6268604e+00 1.1013232e+04 inf]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.size(input, out_type=tf.int32, name=None)

	Returns the size of a tensor.

See also tf.shape.

Returns a 0-D Tensor representing the number of elements in input
of type out_type. Defaults to tf.int32.

For example:

>>> t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
>>> tf.size(t)
<tf.Tensor: shape=(), dtype=int32, numpy=12>






	参数

	
	input – A Tensor or SparseTensor.


	name – A name for the operation (optional).


	out_type – (Optional) The specified non-quantized numeric output type of the
operation. Defaults to tf.int32.






	返回

	A Tensor of type out_type. Defaults to tf.int32.





@compatibility(numpy)
Equivalent to np.size()
@end_compatibility






	
tensorflow.slice(input_, begin, size, name=None)

	Extracts a slice from a tensor.

This operation extracts a slice of size size from a tensor input_ starting
at the location specified by begin. The slice size is represented as a
tensor shape, where size[i] is the number of elements of the ‘i’th dimension
of input_ that you want to slice. The starting location (begin) for the
slice is represented as an offset in each dimension of input_. In other
words, begin[i] is the offset into the i’th dimension of input_ that you
want to slice from.

Note that tf.Tensor.__getitem__ is typically a more pythonic way to
perform slices, as it allows you to write foo[3:7, :-2] instead of
tf.slice(foo, [3, 0], [4, foo.get_shape()[1]-2]).

begin is zero-based; size is one-based. If size[i] is -1,
all remaining elements in dimension i are included in the
slice. In other words, this is equivalent to setting:

size[i] = input_.dim_size(i) - begin[i]

This operation requires that:

0 <= begin[i] <= begin[i] + size[i] <= Di  for i in [0, n]

For example:

```python
t = tf.constant([[[1, 1, 1], [2, 2, 2]],


[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]])




tf.slice(t, [1, 0, 0], [1, 1, 3])  # [[[3, 3, 3]]]
tf.slice(t, [1, 0, 0], [1, 2, 3])  # [[[3, 3, 3],


#   [4, 4, 4]]]





	tf.slice(t, [1, 0, 0], [2, 1, 3])  # [[[3, 3, 3]],

	#  [[5, 5, 5]]]





```


	参数

	
	input – A Tensor.


	begin – An int32 or int64 Tensor.


	size – An int32 or int64 Tensor.


	name – A name for the operation (optional).






	返回

	A Tensor the same type as input_.










	
tensorflow.sort(values, axis=-1, direction='ASCENDING', name=None)

	Sorts a tensor.

Usage:

`python
import tensorflow as tf
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
b = tf.sort(a,axis=-1,direction='ASCENDING',name=None)
c = tf.keras.backend.eval(b)
# Here, c = [  1.     2.8   10.    26.9   62.3  166.32]
`


	参数

	
	values – 1-D or higher numeric Tensor.


	axis – The axis along which to sort. The default is -1, which sorts the last
axis.


	direction – The direction in which to sort the values (‘ASCENDING’ or
‘DESCENDING’).


	name – Optional name for the operation.






	返回

	
	A Tensor with the same dtype and shape as values, with the elements

	sorted along the given axis.









	Raises

	ValueError – If axis is not a constant scalar, or the direction is invalid.










	
tensorflow.space_to_batch(input, block_shape, paddings, name=None)

	SpaceToBatch for N-D tensors of type T.

This operation divides “spatial” dimensions [1, …, M] of the input into a
grid of blocks of shape block_shape, and interleaves these blocks with the
“batch” dimension (0) such that in the output, the spatial dimensions
[1, …, M] correspond to the position within the grid, and the batch
dimension combines both the position within a spatial block and the original
batch position.  Prior to division into blocks, the spatial dimensions of the
input are optionally zero padded according to paddings.  See below for a
precise description.


	参数

	
	input – A Tensor.
N-D with shape input_shape = [batch] + spatial_shape + remaining_shape,
where spatial_shape has M dimensions.


	block_shape – A Tensor. Must be one of the following types: int32, int64.
1-D with shape [M], all values must be >= 1.


	paddings – A Tensor. Must be one of the following types: int32, int64.
2-D with shape [M, 2], all values must be >= 0.


paddings[i] = [pad_start, pad_end] specifies the padding for input dimension
i + 1, which corresponds to spatial dimension i.  It is required that
block_shape[i] divides input_shape[i + 1] + pad_start + pad_end.




This operation is equivalent to the following steps:


	Zero-pad the start and end of dimensions [1, …, M] of the
input according to paddings to produce padded of shape padded_shape.


	Reshape padded to reshaped_padded of shape:


[batch] +
[padded_shape[1] / block_shape[0],



block_shape[0],




…,
padded_shape[M] / block_shape[M-1],
block_shape[M-1]] +




remaining_shape






	Permute dimensions of reshaped_padded to produce
permuted_reshaped_padded of shape:


block_shape +
[batch] +
[padded_shape[1] / block_shape[0],


…,
padded_shape[M] / block_shape[M-1]] +




remaining_shape






	Reshape permuted_reshaped_padded to flatten block_shape into the batch
dimension, producing an output tensor of shape:


[batch * prod(block_shape)] +
[padded_shape[1] / block_shape[0],


…,
padded_shape[M] / block_shape[M-1]] +




remaining_shape








Some examples:


	For the following input of shape [1, 2, 2, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




`
x = [[[[1], [2]], [[3], [4]]]]
`

The output tensor has shape [4, 1, 1, 1] and value:

`
[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]
`


	For the following input of shape [1, 2, 2, 3], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




```
x = [[[[1, 2, 3], [4, 5, 6]],


[[7, 8, 9], [10, 11, 12]]]]




```

The output tensor has shape [4, 1, 1, 3] and value:

`
[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]
`


	For the following input of shape [1, 4, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




```
x = [[[[1],   [2],  [3],  [4]],


[[5],   [6],  [7],  [8]],
[[9],  [10], [11],  [12]],
[[13], [14], [15],  [16]]]]




```

The output tensor has shape [4, 2, 2, 1] and value:

```
x = [[[[1], [3]], [[9], [11]]],


[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]




```


	For the following input of shape [2, 2, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [2, 0]]:




```
x = [[[[1],   [2],  [3],  [4]],



[[5],   [6],  [7],  [8]]],





	[[[9],  [10], [11],  [12]],

	[[13], [14], [15],  [16]]]]








```

The output tensor has shape [8, 1, 3, 1] and value:

```
x = [[[[0], [1], [3]]], [[[0], [9], [11]]],


[[[0], [2], [4]]], [[[0], [10], [12]]],
[[[0], [5], [7]]], [[[0], [13], [15]]],
[[[0], [6], [8]]], [[[0], [14], [16]]]]




```

Among others, this operation is useful for reducing atrous convolution into
regular convolution.




	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.space_to_batch_nd(input, block_shape, paddings, name=None)

	SpaceToBatch for N-D tensors of type T.

This operation divides “spatial” dimensions [1, …, M] of the input into a
grid of blocks of shape block_shape, and interleaves these blocks with the
“batch” dimension (0) such that in the output, the spatial dimensions
[1, …, M] correspond to the position within the grid, and the batch
dimension combines both the position within a spatial block and the original
batch position.  Prior to division into blocks, the spatial dimensions of the
input are optionally zero padded according to paddings.  See below for a
precise description.


	参数

	
	input – A Tensor.
N-D with shape input_shape = [batch] + spatial_shape + remaining_shape,
where spatial_shape has M dimensions.


	block_shape – A Tensor. Must be one of the following types: int32, int64.
1-D with shape [M], all values must be >= 1.


	paddings – A Tensor. Must be one of the following types: int32, int64.
2-D with shape [M, 2], all values must be >= 0.


paddings[i] = [pad_start, pad_end] specifies the padding for input dimension
i + 1, which corresponds to spatial dimension i.  It is required that
block_shape[i] divides input_shape[i + 1] + pad_start + pad_end.




This operation is equivalent to the following steps:


	Zero-pad the start and end of dimensions [1, …, M] of the
input according to paddings to produce padded of shape padded_shape.


	Reshape padded to reshaped_padded of shape:


[batch] +
[padded_shape[1] / block_shape[0],



block_shape[0],




…,
padded_shape[M] / block_shape[M-1],
block_shape[M-1]] +




remaining_shape






	Permute dimensions of reshaped_padded to produce
permuted_reshaped_padded of shape:


block_shape +
[batch] +
[padded_shape[1] / block_shape[0],


…,
padded_shape[M] / block_shape[M-1]] +




remaining_shape






	Reshape permuted_reshaped_padded to flatten block_shape into the batch
dimension, producing an output tensor of shape:


[batch * prod(block_shape)] +
[padded_shape[1] / block_shape[0],


…,
padded_shape[M] / block_shape[M-1]] +




remaining_shape








Some examples:


	For the following input of shape [1, 2, 2, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




`
x = [[[[1], [2]], [[3], [4]]]]
`

The output tensor has shape [4, 1, 1, 1] and value:

`
[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]
`


	For the following input of shape [1, 2, 2, 3], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




```
x = [[[[1, 2, 3], [4, 5, 6]],


[[7, 8, 9], [10, 11, 12]]]]




```

The output tensor has shape [4, 1, 1, 3] and value:

`
[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]
`


	For the following input of shape [1, 4, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




```
x = [[[[1],   [2],  [3],  [4]],


[[5],   [6],  [7],  [8]],
[[9],  [10], [11],  [12]],
[[13], [14], [15],  [16]]]]




```

The output tensor has shape [4, 2, 2, 1] and value:

```
x = [[[[1], [3]], [[9], [11]]],


[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]




```


	For the following input of shape [2, 2, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [2, 0]]:




```
x = [[[[1],   [2],  [3],  [4]],



[[5],   [6],  [7],  [8]]],





	[[[9],  [10], [11],  [12]],

	[[13], [14], [15],  [16]]]]








```

The output tensor has shape [8, 1, 3, 1] and value:

```
x = [[[[0], [1], [3]]], [[[0], [9], [11]]],


[[[0], [2], [4]]], [[[0], [10], [12]]],
[[[0], [5], [7]]], [[[0], [13], [15]]],
[[[0], [6], [8]]], [[[0], [14], [16]]]]




```

Among others, this operation is useful for reducing atrous convolution into
regular convolution.




	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.split(value, num_or_size_splits, axis=0, num=None, name='split')

	Splits a tensor value into a list of sub tensors.

See also tf.unstack.

If num_or_size_splits is an integer, then value is split along the
dimension axis into num_split smaller tensors. This requires that
value.shape[axis] is divisible by num_split.

If num_or_size_splits is a 1-D Tensor (or list), we call it size_splits
and value is split into len(size_splits) elements. The shape of the i-th
element has the same size as the value except along dimension axis where
the size is size_splits[i].

For example:

>>> x = tf.Variable(tf.random.uniform([5, 30], -1, 1))





Split x into 3 tensors along dimension 1
>>> s0, s1, s2 = tf.split(x, num_or_size_splits=3, axis=1)
>>> tf.shape(s0).numpy()
array([ 5, 10], dtype=int32)

Split x into 3 tensors with sizes [4, 15, 11] along dimension 1
>>> split0, split1, split2 = tf.split(x, [4, 15, 11], 1)
>>> tf.shape(split0).numpy()
array([5, 4], dtype=int32)
>>> tf.shape(split1).numpy()
array([ 5, 15], dtype=int32)
>>> tf.shape(split2).numpy()
array([ 5, 11], dtype=int32)


	参数

	
	value – The Tensor to split.


	num_or_size_splits – Either an integer indicating the number of splits along
axis or a 1-D integer Tensor or Python list containing the sizes of
each output tensor along axis. If a scalar, then it must evenly divide
value.shape[axis]; otherwise the sum of sizes along the split axis
must match that of the value.


	axis – An integer or scalar int32 Tensor. The dimension along which to
split. Must be in the range [-rank(value), rank(value)). Defaults to 0.


	num – Optional, used to specify the number of outputs when it cannot be
inferred from the shape of size_splits.


	name – A name for the operation (optional).






	返回

	if num_or_size_splits is a scalar returns a list of num_or_size_splits
Tensor objects; if num_or_size_splits is a 1-D Tensor returns
num_or_size_splits.get_shape[0] Tensor objects resulting from splitting
value.



	Raises

	ValueError – If num is unspecified and cannot be inferred.










	
tensorflow.sqrt(x, name=None)

	Computes element-wise square root of the input tensor.

Note: This operation does not support integer types.

>>> x = tf.constant([[4.0], [16.0]])
>>> tf.sqrt(x)
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
  array([[2.],
         [4.]], dtype=float32)>
>>> y = tf.constant([[-4.0], [16.0]])
>>> tf.sqrt(y)
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
  array([[nan],
         [ 4.]], dtype=float32)>
>>> z = tf.constant([[-1.0], [16.0]], dtype=tf.complex128)
>>> tf.sqrt(z)
<tf.Tensor: shape=(2, 1), dtype=complex128, numpy=
  array([[0.0+1.j],
         [4.0+0.j]])>





Note: In order to support complex complex, please provide an input tensor
of complex64 or complex128.


	参数

	
	x – A tf.Tensor of type bfloat16, half, float32, float64,
complex64, complex128


	name – A name for the operation (optional).






	返回

	A tf.Tensor of same size, type and sparsity as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.sqrt(x.values, …), x.dense_shape)












	
tensorflow.square(x, name=None)

	Computes square of x element-wise.

I.e., \(y = x * x = x^2\).

>>> tf.math.square([-2., 0., 3.])
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([4., 0., 9.], dtype=float32)>






	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.square(x.values, …), x.dense_shape)












	
tensorflow.squeeze(input, axis=None, name=None)

	Removes dimensions of size 1 from the shape of a tensor.

Given a tensor input, this operation returns a tensor of the same type with
all dimensions of size 1 removed. If you don’t want to remove all size 1
dimensions, you can remove specific size 1 dimensions by specifying
axis.

For example:

`python
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
tf.shape(tf.squeeze(t))  # [2, 3]
`

Or, to remove specific size 1 dimensions:

`python
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
tf.shape(tf.squeeze(t, [2, 4]))  # [1, 2, 3, 1]
`

Unlike the older op tf.compat.v1.squeeze, this op does not accept a
deprecated squeeze_dims argument.

Note: if input is a tf.RaggedTensor, then this operation takes O(N)
time, where N is the number of elements in the squeezed dimensions.


	参数

	
	input – A Tensor. The input to squeeze.


	axis – An optional list of ints. Defaults to []. If specified, only
squeezes the dimensions listed. The dimension index starts at 0. It is an
error to squeeze a dimension that is not 1. Must be in the range
[-rank(input), rank(input)). Must be specified if input is a
RaggedTensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.
Contains the same data as input, but has one or more dimensions of
size 1 removed.



	Raises

	ValueError – The input cannot be converted to a tensor, or the specified
axis cannot be squeezed.










	
tensorflow.stack(values, axis=0, name='stack')

	Stacks a list of rank-R tensors into one rank-(R+1) tensor.

See also tf.concat, tf.tile, tf.repeat.

Packs the list of tensors in values into a tensor with rank one higher than
each tensor in values, by packing them along the axis dimension.
Given a list of length N of tensors of shape (A, B, C);

if axis == 0 then the output tensor will have the shape (N, A, B, C).
if axis == 1 then the output tensor will have the shape (A, N, B, C).
Etc.

For example:

>>> x = tf.constant([1, 4])
>>> y = tf.constant([2, 5])
>>> z = tf.constant([3, 6])
>>> tf.stack([x, y, z])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[1, 4],
       [2, 5],
       [3, 6]], dtype=int32)>
>>> tf.stack([x, y, z], axis=1)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)>





This is the opposite of unstack.  The numpy equivalent is np.stack

>>> np.array_equal(np.stack([x, y, z]), tf.stack([x, y, z]))
True






	参数

	
	values – A list of Tensor objects with the same shape and type.


	axis – An int. The axis to stack along. Defaults to the first dimension.
Negative values wrap around, so the valid range is [-(R+1), R+1).


	name – A name for this operation (optional).






	返回

	A stacked Tensor with the same type as values.



	返回类型

	output



	Raises

	ValueError – If axis is out of the range [-(R+1), R+1).










	
tensorflow.stop_gradient(input, name=None)

	Stops gradient computation.

When executed in a graph, this op outputs its input tensor as-is.

When building ops to compute gradients, this op prevents the contribution of
its inputs to be taken into account.  Normally, the gradient generator adds ops
to a graph to compute the derivatives of a specified ‘loss’ by recursively
finding out inputs that contributed to its computation.  If you insert this op
in the graph it inputs are masked from the gradient generator.  They are not
taken into account for computing gradients.

This is useful any time you want to compute a value with TensorFlow but need
to pretend that the value was a constant. Some examples include:


	The EM algorithm where the M-step should not involve backpropagation
through the output of the E-step.


	Contrastive divergence training of Boltzmann machines where, when
differentiating the energy function, the training must not backpropagate
through the graph that generated the samples from the model.


	Adversarial training, where no backprop should happen through the adversarial
example generation process.





	参数

	
	input – A Tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.strided_slice(input_, begin, end, strides=None, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0, var=None, name=None)

	Extracts a strided slice of a tensor (generalized python array indexing).

Instead of calling this op directly most users will want to use the
NumPy-style slicing syntax (e.g. `tensor[…, 3:4:-1, tf.newaxis, 3]`), which
is supported via `tf.Tensor.__getitem__` and `tf.Variable.__getitem__`.
The interface of this op is a low-level encoding of the slicing syntax.

Roughly speaking, this op extracts a slice of size (end-begin)/stride
from the given input_ tensor. Starting at the location specified by begin
the slice continues by adding stride to the index until all dimensions are
not less than end.
Note that a stride can be negative, which causes a reverse slice.

Given a Python slice input[spec0, spec1, …, specn],
this function will be called as follows.

begin, end, and strides will be vectors of length n.
n in general is not equal to the rank of the input_ tensor.

In each mask field (begin_mask, end_mask, ellipsis_mask,
new_axis_mask, shrink_axis_mask) the ith bit will correspond to
the ith spec.

If the ith bit of begin_mask is set, begin[i] is ignored and
the fullest possible range in that dimension is used instead.
end_mask works analogously, except with the end range.

foo[5:,:,:3] on a 7x8x9 tensor is equivalent to foo[5:7,0:8,0:3].
foo[::-1] reverses a tensor with shape 8.

If the ith bit of ellipsis_mask is set, as many unspecified dimensions
as needed will be inserted between other dimensions. Only one
non-zero bit is allowed in ellipsis_mask.

For example foo[3:5,…,4:5] on a shape 10x3x3x10 tensor is
equivalent to foo[3:5,:,:,4:5] and
foo[3:5,…] is equivalent to foo[3:5,:,:,:].

If the ith bit of new_axis_mask is set, then begin,
end, and stride are ignored and a new length 1 dimension is
added at this point in the output tensor.

For example,
foo[:4, tf.newaxis, :2] would produce a shape (4, 1, 2) tensor.

If the ith bit of shrink_axis_mask is set, it implies that the ith
specification shrinks the dimensionality by 1, taking on the value at index
begin[i]. end[i] and strides[i] are ignored in this case. For example in
Python one might do foo[:, 3, :] which would result in shrink_axis_mask
equal to 2.

NOTE: begin and end are zero-indexed.
strides entries must be non-zero.

```python
t = tf.constant([[[1, 1, 1], [2, 2, 2]],


[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]])




tf.strided_slice(t, [1, 0, 0], [2, 1, 3], [1, 1, 1])  # [[[3, 3, 3]]]
tf.strided_slice(t, [1, 0, 0], [2, 2, 3], [1, 1, 1])  # [[[3, 3, 3],


#   [4, 4, 4]]]





	tf.strided_slice(t, [1, -1, 0], [2, -3, 3], [1, -1, 1])  # [[[4, 4, 4],

	#   [3, 3, 3]]]





```


	参数

	
	input – A Tensor.


	begin – An int32 or int64 Tensor.


	end – An int32 or int64 Tensor.


	strides – An int32 or int64 Tensor.


	begin_mask – An int32 mask.


	end_mask – An int32 mask.


	ellipsis_mask – An int32 mask.


	new_axis_mask – An int32 mask.


	shrink_axis_mask – An int32 mask.


	var – The variable corresponding to input_ or None


	name – A name for the operation (optional).






	返回

	A Tensor the same type as input.










	
tensorflow.subtract(x, y, name=None)

	Returns x - y element-wise.

NOTE: Subtract supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.switch_case(branch_index, branch_fns, default=None, name='switch_case')

	Create a switch/case operation, i.e. an integer-indexed conditional.

See also tf.case.

This op can be substantially more efficient than tf.case when exactly one
branch will be selected. tf.switch_case is more like a C++ switch/case
statement than tf.case, which is more like an if/elif/elif/else chain.

The branch_fns parameter is either a dict from int to callables, or list
of (int, callable) pairs, or simply a list of callables (in which case the
index is implicitly the key). The branch_index Tensor is used to select an
element in branch_fns with matching int key, falling back to default
if none match, or max(keys) if no default is provided. The keys must form
a contiguous set from 0 to len(branch_fns) - 1.

tf.switch_case supports nested structures as implemented in tf.nest. All
callables must return the same (possibly nested) value structure of lists,
tuples, and/or named tuples.

Example:

Pseudocode:

```c++
switch (branch_index) {  // c-style switch


case 0: return 17;
case 1: return 31;
default: return -1;




or
`python
branches = {0: lambda: 17, 1: lambda: 31}
branches.get(branch_index, lambda: -1)()
`

Expressions:

`python
def f1(): return tf.constant(17)
def f2(): return tf.constant(31)
def f3(): return tf.constant(-1)
r = tf.switch_case(branch_index, branch_fns={0: f1, 1: f2}, default=f3)
# Equivalent: tf.switch_case(branch_index, branch_fns={0: f1, 1: f2, 2: f3})
`


	参数

	
	branch_index – An int Tensor specifying which of branch_fns should be
executed.


	branch_fns – A dict mapping int`s to callables, or a `list of
(int, callable) pairs, or simply a list of callables (in which case the
index serves as the key). Each callable must return a matching structure
of tensors.


	default – Optional callable that returns a structure of tensors.


	name – A name for this operation (optional).






	返回

	The tensors returned by the callable identified by branch_index, or those
returned by default if no key matches and default was provided, or those
returned by the max-keyed branch_fn if no default is provided.



	Raises

	
	TypeError – If branch_fns is not a list/dictionary.


	TypeError – If branch_fns is a list but does not contain 2-tuples or
callables.


	TypeError – If fns[i] is not callable for any i, or default is not
callable.













	
tensorflow.tan(x, name=None)

	Computes tan of x element-wise.


Given an input tensor, this function computes tangent of every
element in the tensor. Input range is (-inf, inf) and
output range is (-inf, inf). If input lies outside the boundary, nan
is returned.

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.tan(x) ==> [nan 0.45231566 -0.5463025 1.5574077 2.572152 -1.7925274 0.32097113 nan]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.tanh(x, name=None)

	Computes hyperbolic tangent of x element-wise.


Given an input tensor, this function computes hyperbolic tangent of every
element in the tensor. Input range is [-inf, inf] and
output range is [-1,1].

`python
x = tf.constant([-float("inf"), -5, -0.5, 1, 1.2, 2, 3, float("inf")])
tf.math.tanh(x) ==> [-1. -0.99990916 -0.46211717 0.7615942 0.8336547 0.9640276 0.9950547 1.]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.tanh(x.values, …), x.dense_shape)












	
tensorflow.tensor_scatter_nd_add(tensor, indices, updates, name=None)

	Adds sparse updates to an existing tensor according to indices.

This operation creates a new tensor by adding sparse updates to the passed
in tensor.
This operation is very similar to tf.scatter_nd_add, except that the updates
are added onto an existing tensor (as opposed to a variable). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:


indices.shape[-1] <= shape.rank




The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape


indices.shape[:-1] + shape[indices.shape[-1]:]




The simplest form of tensor_scatter_add is to add individual elements to a
tensor by index. For example, say we want to add 4 elements in a rank-1
tensor with 8 elements.

In Python, this scatter add operation would look like this:


	```python

	indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
tensor = tf.ones([8], dtype=tf.int32)
updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
print(updated)





```

The resulting tensor would look like this:


[1, 12, 1, 11, 10, 1, 1, 13]




We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter add operation would look like this:


	```python

	indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],



[7, 7, 7, 7], [8, 8, 8, 8]],





	[[5, 5, 5, 5], [6, 6, 6, 6],

	[7, 7, 7, 7], [8, 8, 8, 8]]])








tensor = tf.ones([4, 4, 4],dtype=tf.int32)
updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
print(updated)





```

The resulting tensor would look like this:



	[[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],

	[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]








Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.


	参数

	
	tensor – A Tensor. Tensor to copy/update.


	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	updates – A Tensor. Must have the same type as tensor.
Updates to scatter into output.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.tensor_scatter_nd_sub(tensor, indices, updates, name=None)

	Subtracts sparse updates from an existing tensor according to indices.

This operation creates a new tensor by subtracting sparse updates from the
passed in tensor.
This operation is very similar to tf.scatter_nd_sub, except that the updates
are subtracted from an existing tensor (as opposed to a variable). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:


indices.shape[-1] <= shape.rank




The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape


indices.shape[:-1] + shape[indices.shape[-1]:]




The simplest form of tensor_scatter_sub is to subtract individual elements
from a tensor by index. For example, say we want to insert 4 scattered elements
in a rank-1 tensor with 8 elements.

In Python, this scatter subtract operation would look like this:


	```python

	indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
tensor = tf.ones([8], dtype=tf.int32)
updated = tf.tensor_scatter_nd_sub(tensor, indices, updates)
print(updated)





```

The resulting tensor would look like this:


[1, -10, 1, -9, -8, 1, 1, -11]




We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter add operation would look like this:


	```python

	indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],



[7, 7, 7, 7], [8, 8, 8, 8]],





	[[5, 5, 5, 5], [6, 6, 6, 6],

	[7, 7, 7, 7], [8, 8, 8, 8]]])








tensor = tf.ones([4, 4, 4],dtype=tf.int32)
updated = tf.tensor_scatter_nd_sub(tensor, indices, updates)
print(updated)





```

The resulting tensor would look like this:



	[[[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]],

	[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
[[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]








Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.


	参数

	
	tensor – A Tensor. Tensor to copy/update.


	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	updates – A Tensor. Must have the same type as tensor.
Updates to scatter into output.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.tensor_scatter_nd_update(tensor, indices, updates, name=None)

	Scatter updates into an existing tensor according to indices.

This operation creates a new tensor by applying sparse updates to the passed
in tensor.
This operation is very similar to tf.scatter_nd, except that the updates are
scattered onto an existing tensor (as opposed to a zero-tensor). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.

If indices contains duplicates, then their updates are accumulated (summed).

WARNING: The order in which updates are applied is nondeterministic, so the
output will be nondeterministic if indices contains duplicates – because
of some numerical approximation issues, numbers summed in different order
may yield different results.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:


indices.shape[-1] <= shape.rank




The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape


indices.shape[:-1] + shape[indices.shape[-1]:]




The simplest form of scatter is to insert individual elements in a tensor by
index. For example, say we want to insert 4 scattered elements in a rank-1
tensor with 8 elements.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/ScatterNd1.png” alt>
</div>

In Python, this scatter operation would look like this:

>>> indices = tf.constant([[4], [3], [1], [7]])
>>> updates = tf.constant([9, 10, 11, 12])
>>> tensor = tf.ones([8], dtype=tf.int32)
>>> print(tf.tensor_scatter_nd_update(tensor, indices, updates))
tf.Tensor([ 1 11  1 10  9  1  1 12], shape=(8,), dtype=int32)





We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter operation would look like this:

>>> indices = tf.constant([[0], [2]])
>>> updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
...                         [7, 7, 7, 7], [8, 8, 8, 8]],
...                        [[5, 5, 5, 5], [6, 6, 6, 6],
...                         [7, 7, 7, 7], [8, 8, 8, 8]]])
>>> tensor = tf.ones([4, 4, 4], dtype=tf.int32)
>>> print(tf.tensor_scatter_nd_update(tensor, indices, updates).numpy())
[[[5 5 5 5]
  [6 6 6 6]
  [7 7 7 7]
  [8 8 8 8]]
 [[1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]]
 [[5 5 5 5]
  [6 6 6 6]
  [7 7 7 7]
  [8 8 8 8]]
 [[1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]]]





Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.


	参数

	
	tensor – A Tensor. Tensor to copy/update.


	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	updates – A Tensor. Must have the same type as tensor.
Updates to scatter into output.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.tensordot(a, b, axes, name=None)

	Tensor contraction of a and b along specified axes and outer product.

Tensordot (also known as tensor contraction) sums the product of elements
from a and b over the indices specified by a_axes and b_axes.
The lists a_axes and b_axes specify those pairs of axes along which to
contract the tensors. The axis a_axes[i] of a must have the same dimension
as axis b_axes[i] of b for all i in range(0, len(a_axes)). The lists
a_axes and b_axes must have identical length and consist of unique
integers that specify valid axes for each of the tensors. Additionally
outer product is supported by passing axes=0.

This operation corresponds to numpy.tensordot(a, b, axes).

Example 1: When a and b are matrices (order 2), the case axes = 1
is equivalent to matrix multiplication.

Example 2: When a and b are matrices (order 2), the case
axes = [[1], [0]] is equivalent to matrix multiplication.

Example 3: When a and b are matrices (order 2), the case axes=0 gives
the outer product, a tensor of order 4.

Example 4: Suppose that \(a_{ijk}\) and \(b_{lmn}\) represent two
tensors of order 3. Then, contract(a, b, [[0], [2]]) is the order 4 tensor
\(c_{jklm}\) whose entry
corresponding to the indices \((j,k,l,m)\) is given by:

\( c_{jklm} = sum_i a_{ijk} b_{lmi} \).

In general, order(c) = order(a) + order(b) - 2*len(axes[0]).


	参数

	
	a – Tensor of type float32 or float64.


	b – Tensor with the same type as a.


	axes – Either a scalar N, or a list or an int32 Tensor of shape [2, k].
If axes is a scalar, sum over the last N axes of a and the first N axes of
b in order. If axes is a list or Tensor the first and second row contain
the set of unique integers specifying axes along which the contraction is
computed, for a and b, respectively. The number of axes for a and
b must be equal. If axes=0, computes the outer product between a and
b.


	name – A name for the operation (optional).






	返回

	A Tensor with the same type as a.



	Raises

	
	ValueError – If the shapes of a, b, and axes are incompatible.


	IndexError – If the values in axes exceed the rank of the corresponding
tensor.













	
tensorflow.tile(input, multiples, name=None)

	Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by replicating input multiples times.
The output tensor’s i’th dimension has input.dims(i) * multiples[i] elements,
and the values of input are replicated multiples[i] times along the ‘i’th
dimension. For example, tiling [a b c d] by [2] produces
[a b c d a b c d].

>>> a = tf.constant([[1,2,3],[4,5,6]], tf.int32)
>>> b = tf.constant([1,2], tf.int32)
>>> tf.tile(a, b)
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
       [4, 5, 6, 4, 5, 6]], dtype=int32)>
>>> c = tf.constant([2,1], tf.int32)
>>> tf.tile(a, c)
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6],
       [1, 2, 3],
       [4, 5, 6]], dtype=int32)>
>>> d = tf.constant([2,2], tf.int32)
>>> tf.tile(a, d)
<tf.Tensor: shape=(4, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
       [4, 5, 6, 4, 5, 6],
       [1, 2, 3, 1, 2, 3],
       [4, 5, 6, 4, 5, 6]], dtype=int32)>






	参数

	
	input – A Tensor. 1-D or higher.


	multiples – A Tensor. Must be one of the following types: int32, int64.
1-D. Length must be the same as the number of dimensions in input


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.timestamp(name=None)

	Provides the time since epoch in seconds.

Returns the timestamp as a float64 for seconds since the Unix epoch.

Note: the timestamp is computed when the op is executed, not when it is added
to the graph.


	参数

	name – A name for the operation (optional).



	返回

	A Tensor of type float64.










	
tensorflow.transpose(a, perm=None, conjugate=False, name='transpose')

	Transposes a, where a is a Tensor.

Permutes the dimensions according to the value of perm.

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1…0), where n is the rank
of the input tensor. Hence by default, this operation performs a regular
matrix transpose on 2-D input Tensors.

If conjugate is True and a.dtype is either complex64 or complex128
then the values of a are conjugated and transposed.

@compatibility(numpy)
In numpy transposes are memory-efficient constant time operations as they
simply return a new view of the same data with adjusted strides.

TensorFlow does not support strides, so transpose returns a new tensor with
the items permuted.
@end_compatibility

For example:

>>> x = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.transpose(x)
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[1, 4],
       [2, 5],
       [3, 6]], dtype=int32)>





Equivalently, you could call tf.transpose(x, perm=[1, 0]).

If x is complex, setting conjugate=True gives the conjugate transpose:

>>> x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
...                  [4 + 4j, 5 + 5j, 6 + 6j]])
>>> tf.transpose(x, conjugate=True)
<tf.Tensor: shape=(3, 2), dtype=complex128, numpy=
array([[1.-1.j, 4.-4.j],
       [2.-2.j, 5.-5.j],
       [3.-3.j, 6.-6.j]])>





‘perm’ is more useful for n-dimensional tensors where n > 2:

>>> x = tf.constant([[[ 1,  2,  3],
...                   [ 4,  5,  6]],
...                  [[ 7,  8,  9],
...                   [10, 11, 12]]])





As above, simply calling tf.transpose will default to perm=[2,1,0].

To take the transpose of the matrices in dimension-0 (such as when you are
transposing matrices where 0 is the batch dimesnion), you would set
perm=[0,2,1].

>>> tf.transpose(x, perm=[0, 2, 1])
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[ 1,  4],
        [ 2,  5],
        [ 3,  6]],
        [[ 7, 10],
        [ 8, 11],
        [ 9, 12]]], dtype=int32)>





Note: This has a shorthand linalg.matrix_transpose):


	参数

	
	a – A Tensor.


	perm – A permutation of the dimensions of a.  This should be a vector.


	conjugate – Optional bool. Setting it to True is mathematically equivalent
to tf.math.conj(tf.transpose(input)).


	name – A name for the operation (optional).






	返回

	A transposed Tensor.










	
tensorflow.truediv(x, y, name=None)

	Divides x / y elementwise (using Python 3 division operator semantics).

NOTE: Prefer using the Tensor operator or tf.divide which obey Python
division operator semantics.

This function forces Python 3 division operator semantics where all integer
arguments are cast to floating types first.   This op is generated by normal
x / y division in Python 3 and in Python 2.7 with
from __future__ import division.  If you want integer division that rounds
down, use x // y or tf.math.floordiv.

x and y must have the same numeric type.  If the inputs are floating
point, the output will have the same type.  If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).


	参数

	
	x – Tensor numerator of numeric type.


	y – Tensor denominator of numeric type.


	name – A name for the operation (optional).






	返回

	x / y evaluated in floating point.



	Raises

	TypeError – If x and y have different dtypes.










	
tensorflow.truncatediv(x, y, name=None)

	Returns x / y element-wise for integer types.

Truncation designates that negative numbers will round fractional quantities
toward zero. I.e. -7 / 5 = -1. This matches C semantics but it is different
than Python semantics. See FloorDiv for a division function that matches
Python Semantics.

NOTE: truncatediv supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.truncatemod(x, y, name=None)

	Returns element-wise remainder of division. This emulates C semantics in that

the result here is consistent with a truncating divide. E.g. truncate(x / y) *
y + truncate_mod(x, y) = x.

NOTE: truncatemod supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: int32, int64, bfloat16, half, float32, float64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.tuple(tensors, control_inputs=None, name=None)

	Group tensors together.

This creates a tuple of tensors with the same values as the tensors
argument, except that the value of each tensor is only returned after the
values of all tensors have been computed.

control_inputs contains additional ops that have to finish before this op
finishes, but whose outputs are not returned.

This can be used as a “join” mechanism for parallel computations: all the
argument tensors can be computed in parallel, but the values of any tensor
returned by tuple are only available after all the parallel computations
are done.

See also tf.group and
tf.control_dependencies.


	参数

	
	tensors – A list of Tensor`s or `IndexedSlices, some entries can be None.


	control_inputs – List of additional ops to finish before returning.


	name – (optional) A name to use as a name_scope for the operation.






	返回

	Same as tensors.



	Raises

	
	ValueError – If tensors does not contain any Tensor or IndexedSlices.


	TypeError – If control_inputs is not a list of Operation or Tensor
objects.













	
tensorflow.unique(x, out_idx=tf.int32, name=None)

	Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x; x does not need to be sorted.
This operation also returns a tensor idx the same size as x that contains
the index of each value of x in the unique output y. In other words:

y[idx[i]] = x[i] for i in [0, 1,…,rank(x) - 1]

Examples:

`
# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx = unique(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
`

`
# tensor 'x' is [4, 5, 1, 2, 3, 3, 4, 5]
y, idx = unique(x)
y ==> [4, 5, 1, 2, 3]
idx ==> [0, 1, 2, 3, 4, 4, 0, 1]
`


	参数

	
	x – A Tensor. 1-D.


	out_idx – An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.


	name – A name for the operation (optional).






	返回

	A tuple of Tensor objects (y, idx).

y: A Tensor. Has the same type as x.
idx: A Tensor of type out_idx.












	
tensorflow.unique_with_counts(x, out_idx=tf.int32, name=None)

	Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x. This operation also returns a
tensor idx the same size as x that contains the index of each value of x
in the unique output y. Finally, it returns a third tensor count that
contains the count of each element of y in x. In other words:

y[idx[i]] = x[i] for i in [0, 1,…,rank(x) - 1]

For example:

`
# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx, count = unique_with_counts(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
count ==> [2, 1, 3, 1, 2]
`


	参数

	
	x – A Tensor. 1-D.


	out_idx – An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.


	name – A name for the operation (optional).






	返回

	A tuple of Tensor objects (y, idx, count).

y: A Tensor. Has the same type as x.
idx: A Tensor of type out_idx.
count: A Tensor of type out_idx.












	
tensorflow.unravel_index(indices, dims, name=None)

	Converts an array of flat indices into a tuple of coordinate arrays.

Example:

`
y = tf.unravel_index(indices=[2, 5, 7], dims=[3, 3])
# 'dims' represent a hypothetical (3, 3) tensor of indices:
# [[0, 1, *2*],
#  [3, 4, *5*],
#  [6, *7*, 8]]
# For each entry from 'indices', this operation returns
# its coordinates (marked with '*'), such as
# 2 ==> (0, 2)
# 5 ==> (1, 2)
# 7 ==> (2, 1)
y ==> [[0, 1, 2], [2, 2, 1]]
`

@compatibility(numpy)
Equivalent to np.unravel_index
@end_compatibility


	参数

	
	indices – A Tensor. Must be one of the following types: int32, int64.
An 0-D or 1-D int Tensor whose elements are indices into the
flattened version of an array of dimensions dims.


	dims – A Tensor. Must have the same type as indices.
An 1-D int Tensor. The shape of the array to use for unraveling
indices.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as indices.










	
tensorflow.unstack(value, num=None, axis=0, name='unstack')

	Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors.

Unpacks num tensors from value by chipping it along the axis dimension.
If num is not specified (the default), it is inferred from value’s shape.
If value.shape[axis] is not known, ValueError is raised.

For example, given a tensor of shape (A, B, C, D);


	If axis == 0 then the i’th tensor in output is the slice

	value[i, :, :, :] and each tensor in output will have shape (B, C, D).
(Note that the dimension unpacked along is gone, unlike split).



	If axis == 1 then the i’th tensor in output is the slice

	value[:, i, :, :] and each tensor in output will have shape (A, C, D).





Etc.

This is the opposite of stack.


	参数

	
	value – A rank R > 0 Tensor to be unstacked.


	num – An int. The length of the dimension axis. Automatically inferred if
None (the default).


	axis – An int. The axis to unstack along. Defaults to the first dimension.
Negative values wrap around, so the valid range is [-R, R).


	name – A name for the operation (optional).






	返回

	The list of Tensor objects unstacked from value.



	Raises

	
	ValueError – If num is unspecified and cannot be inferred.


	ValueError – If axis is out of the range [-R, R).













	
tensorflow.variable_creator_scope(variable_creator)

	Scope which defines a variable creation function to be used by variable().

variable_creator is expected to be a function with the following signature:


	```

	def variable_creator(next_creator, **kwargs)





```

The creator is supposed to eventually call the next_creator to create a
variable if it does want to create a variable and not call Variable or
ResourceVariable directly. This helps make creators composable. A creator may
choose to create multiple variables, return already existing variables, or
simply register that a variable was created and defer to the next creators in
line. Creators can also modify the keyword arguments seen by the next
creators.

Custom getters in the variable scope will eventually resolve down to these
custom creators when they do create variables.

The valid keyword arguments in kwds are:



	
	initial_value: A Tensor, or Python object convertible to a Tensor,

	which is the initial value for the Variable. The initial value must have
a shape specified unless validate_shape is set to False. Can also be a
callable with no argument that returns the initial value when called. In
that case, dtype must be specified. (Note that initializer functions
from init_ops.py must first be bound to a shape before being used here.)







	
	trainable: If True, the default, GradientTapes automatically watch

	uses of this Variable.







	
	validate_shape: If False, allows the variable to be initialized with a

	value of unknown shape. If True, the default, the shape of
initial_value must be known.







	
	caching_device: Optional device string describing where the Variable

	should be cached for reading.  Defaults to the Variable’s device.
If not None, caches on another device.  Typical use is to cache
on the device where the Ops using the Variable reside, to deduplicate
copying through Switch and other conditional statements.







	
	name: Optional name for the variable. Defaults to ‘Variable’ and gets

	
uniquified automatically.





	dtype: If set, initial_value will be converted to the given type.

	If None, either the datatype will be kept (if initial_value is
a Tensor), or convert_to_tensor will decide.











	
	constraint: A constraint function to be applied to the variable after

	updates by some algorithms.







	
	synchronization: Indicates when a distributed a variable will be

	aggregated. Accepted values are constants defined in the class
tf.VariableSynchronization. By default the synchronization is set to
AUTO and the current DistributionStrategy chooses
when to synchronize.







	
	aggregation: Indicates how a distributed variable will be aggregated.

	Accepted values are constants defined in the class
tf.VariableAggregation.












This set may grow over time, so it’s important the signature of creators is as
mentioned above.


	参数

	variable_creator – the passed creator



	Yields

	A scope in which the creator is active










	
tensorflow.vectorized_map(fn, elems)

	Parallel map on the list of tensors unpacked from elems on dimension 0.

This method works similar to tf.map_fn but is optimized to run much faster,
possibly with a much larger memory footprint. The speedups are obtained by
vectorization (see https://arxiv.org/pdf/1903.04243.pdf). The idea behind
vectorization is to semantically launch all the invocations of fn in
parallel and fuse corresponding operations across all these invocations. This
fusion is done statically at graph generation time and the generated code is
often similar in performance to a manually fused version.

Because tf.vectorized_map fully parallelizes the batch, this method will
generally be significantly faster than using tf.map_fn, especially in eager
mode. However this is an experimental feature and currently has a lot of
limitations:



	There should be no data dependency between the different semantic
invocations of fn, i.e. it should be safe to map the elements of the
inputs in any order.


	Stateful kernels may mostly not be supported since these often imply a
data dependency. We do support a limited set of such stateful kernels
though (like RandomFoo, Variable operations like reads, etc).


	fn has limited support for control flow operations. tf.cond in
particular is not supported.


	fn should return nested structure of Tensors or Operations. However
if an Operation is returned, it should have zero outputs.


	The shape and dtype of any intermediate or output tensors in the
computation of fn should not depend on the input to fn.







Examples:
```python
def outer_product(a):


return tf.tensordot(a, a, 0)




batch_size = 100
a = tf.ones((batch_size, 32, 32))
c = tf.vectorized_map(outer_product, a)
assert c.shape == (batch_size, 32, 32, 32, 32)
```

```python
# Computing per-example gradients

batch_size = 10
num_features = 32
layer = tf.keras.layers.Dense(1)


	def model_fn(arg):

	
	with tf.GradientTape() as g:

	inp, label = arg
inp = tf.expand_dims(inp, 0)
label = tf.expand_dims(label, 0)
prediction = layer(inp)
loss = tf.nn.l2_loss(label - prediction)





return g.gradient(loss, (layer.kernel, layer.bias))





inputs = tf.random.uniform([batch_size, num_features])
labels = tf.random.uniform([batch_size, 1])
per_example_gradients = tf.vectorized_map(model_fn, (inputs, labels))
assert per_example_gradients[0].shape == (batch_size, num_features, 1)
assert per_example_gradients[1].shape == (batch_size, 1)
```


	参数

	
	fn – The callable to be performed. It accepts one argument, which will have
the same (possibly nested) structure as elems, and returns a possibly
nested structure of Tensors and Operations, which may be different than
the structure of elems.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension. The nested sequence of the
resulting slices will be mapped over by fn.






	返回

	A tensor or (possibly nested) sequence of tensors. Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, from first to last.










	
tensorflow.where(condition, x=None, y=None, name=None)

	Return the elements where condition is True (multiplexing x and y).

This operator has two modes: in one mode both x and y are provided, in
another mode neither are provided. condition is always expected to be a
tf.Tensor of type bool.

#### Retrieving indices of True elements

If x and y are not provided (both are None):

tf.where will return the indices of condition that are True, in
the form of a 2-D tensor with shape (n, d).
(Where n is the number of matching indices in condition,
and d is the number of dimensions in condition).

Indices are output in row-major order.

>>> tf.where([True, False, False, True])
<tf.Tensor: shape=(2, 1), dtype=int64, numpy=
array([[0],
       [3]])>





>>> tf.where([[True, False], [False, True]])
<tf.Tensor: shape=(2, 2), dtype=int64, numpy=
array([[0, 0],
       [1, 1]])>





>>> tf.where([[[True, False], [False, True], [True, True]]])
<tf.Tensor: shape=(4, 3), dtype=int64, numpy=
array([[0, 0, 0],
       [0, 1, 1],
       [0, 2, 0],
       [0, 2, 1]])>





#### Multiplexing between x and y

If x and y are provided (both have non-None values):

tf.where will choose an output shape from the shapes of condition, x,
and y that all three shapes are
[broadcastable](https://docs.scipy.org/doc/numpy/reference/ufuncs.html) to.

The condition tensor acts as a mask that chooses whether the corresponding
element / row in the output should be taken from x
(if the elemment in condition is True) or `y (if it is false).

>>> tf.where([True, False, False, True], [1,2,3,4], [100,200,300,400])
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([  1, 200, 300,   4],
dtype=int32)>
>>> tf.where([True, False, False, True], [1,2,3,4], [100])
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([  1, 100, 100,   4],
dtype=int32)>
>>> tf.where([True, False, False, True], [1,2,3,4], 100)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([  1, 100, 100,   4],
dtype=int32)>
>>> tf.where([True, False, False, True], 1, 100)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([  1, 100, 100,   1],
dtype=int32)>





>>> tf.where(True, [1,2,3,4], 100)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([1, 2, 3, 4],
dtype=int32)>
>>> tf.where(False, [1,2,3,4], 100)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([100, 100, 100, 100],
dtype=int32)>






	参数

	
	condition – A tf.Tensor of type bool


	x – If provided, a Tensor which is of the same type as y, and has a shape
broadcastable with condition and y.


	y – If provided, a Tensor which is of the same type as y, and has a shape
broadcastable with condition and x.


	name – A name of the operation (optional).






	返回

	
	A Tensor with the same type as x and y, and shape that

	is broadcast from condition, x, and y.





Otherwise, a Tensor with shape (num_true, dim_size(condition)).





	返回类型

	If x and y are provided



	Raises

	ValueError – When exactly one of x or y is non-None, or the shapes
are not all broadcastable.










	
tensorflow.while_loop(cond, body, loop_vars, shape_invariants=None, parallel_iterations=10, back_prop=True, swap_memory=False, maximum_iterations=None, name=None)

	Repeat body while the condition cond is true. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.while_loop(c, b, vars, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.while_loop(c, b, vars))

cond is a callable returning a boolean scalar tensor. body is a callable
returning a (possibly nested) tuple, namedtuple or list of tensors of the same
arity (length and structure) and types as loop_vars. loop_vars is a
(possibly nested) tuple, namedtuple or list of tensors that is passed to both
cond and body. cond and body both take as many arguments as there are
loop_vars.

In addition to regular Tensors or IndexedSlices, the body may accept and
return TensorArray objects.  The flows of the TensorArray objects will
be appropriately forwarded between loops and during gradient calculations.

Note that while_loop calls cond and body exactly once (inside the
call to while_loop, and not at all during Session.run()). while_loop
stitches together the graph fragments created during the cond and body
calls with some additional graph nodes to create the graph flow that
repeats body until cond returns false.

For correctness, tf.while_loop() strictly enforces shape invariants for
the loop variables. A shape invariant is a (possibly partial) shape that
is unchanged across the iterations of the loop. An error will be raised
if the shape of a loop variable after an iteration is determined to be more
general than or incompatible with its shape invariant. For example, a shape
of [11, None] is more general than a shape of [11, 17], and [11, 21] is not
compatible with [11, 17]. By default (if the argument shape_invariants is
not specified), it is assumed that the initial shape of each tensor in
loop_vars is the same in every iteration. The shape_invariants argument
allows the caller to specify a less specific shape invariant for each loop
variable, which is needed if the shape varies between iterations. The
tf.Tensor.set_shape
function may also be used in the body function to indicate that
the output loop variable has a particular shape. The shape invariant for
SparseTensor and IndexedSlices are treated specially as follows:

a) If a loop variable is a SparseTensor, the shape invariant must be
TensorShape([r]) where r is the rank of the dense tensor represented
by the sparse tensor. It means the shapes of the three tensors of the
SparseTensor are ([None], [None, r], [r]). NOTE: The shape invariant here
is the shape of the SparseTensor.dense_shape property. It must be the shape of
a vector.

b) If a loop variable is an IndexedSlices, the shape invariant must be
a shape invariant of the values tensor of the IndexedSlices. It means
the shapes of the three tensors of the IndexedSlices are (shape, [shape[0]],
[shape.ndims]).

while_loop implements non-strict semantics, enabling multiple iterations
to run in parallel. The maximum number of parallel iterations can be
controlled by parallel_iterations, which gives users some control over
memory consumption and execution order. For correct programs, while_loop
should return the same result for any parallel_iterations > 0.

For training, TensorFlow stores the tensors that are produced in the
forward inference and are needed in back propagation. These tensors are a
main source of memory consumption and often cause OOM errors when training
on GPUs. When the flag swap_memory is true, we swap out these tensors from
GPU to CPU. This for example allows us to train RNN models with very long
sequences and large batches.


	参数

	
	cond – A callable that represents the termination condition of the loop.


	body – A callable that represents the loop body.


	loop_vars – A (possibly nested) tuple, namedtuple or list of numpy array,
Tensor, and TensorArray objects.


	shape_invariants – The shape invariants for the loop variables.


	parallel_iterations – The number of iterations allowed to run in parallel. It
must be a positive integer.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – Whether GPU-CPU memory swap is enabled for this loop.


	maximum_iterations – Optional maximum number of iterations of the while loop
to run.  If provided, the cond output is AND-ed with an additional
condition ensuring the number of iterations executed is no greater than
maximum_iterations.


	name – Optional name prefix for the returned tensors.






	返回

	
	The output tensors for the loop variables after the loop. The return value

	has the same structure as loop_vars.









	Raises

	
	TypeError – if cond or body is not callable.


	ValueError – if loop_vars is empty.








Example:

`python
i = tf.constant(0)
c = lambda i: tf.less(i, 10)
b = lambda i: (tf.add(i, 1), )
r = tf.while_loop(c, b, [i])
`

Example with nesting and a namedtuple:

`python
import collections
Pair = collections.namedtuple('Pair', 'j, k')
ijk_0 = (tf.constant(0), Pair(tf.constant(1), tf.constant(2)))
c = lambda i, p: i < 10
b = lambda i, p: (i + 1, Pair((p.j + p.k), (p.j - p.k)))
ijk_final = tf.while_loop(c, b, ijk_0)
`

Example using shape_invariants:

```python
i0 = tf.constant(0)
m0 = tf.ones([2, 2])
c = lambda i, m: i < 10
b = lambda i, m: [i+1, tf.concat([m, m], axis=0)]
tf.while_loop(


c, b, loop_vars=[i0, m0],
shape_invariants=[i0.get_shape(), tf.TensorShape([None, 2])])




```

Example which demonstrates non-strict semantics: In the following
example, the final value of the counter i does not depend on x. So
the while_loop can increment the counter parallel to updates of x.
However, because the loop counter at one loop iteration depends
on the value at the previous iteration, the loop counter itself cannot
be incremented in parallel. Hence if we just want the final value of the
counter (which we print on the line print(sess.run(i))), then
x will never be incremented, but the counter will be updated on a
single thread. Conversely, if we want the value of the output (which we
print on the line print(sess.run(out).shape)), then the counter may be
incremented on its own thread, while x can be incremented in
parallel on a separate thread. In the extreme case, it is conceivable
that the thread incrementing the counter runs until completion before
x is incremented even a single time. The only thing that can never
happen is that the thread updating x can never get ahead of the
counter thread because the thread incrementing x depends on the value
of the counter.

```python
import tensorflow as tf

n = 10000
x = tf.constant(list(range(n)))
c = lambda i, x: i < n
b = lambda i, x: (tf.compat.v1.Print(i + 1, [i]), tf.compat.v1.Print(x + 1,
[i], “x:”))
i, out = tf.while_loop(c, b, (0, x))
with tf.compat.v1.Session() as sess:


print(sess.run(i))  # prints [0] … [9999]

# The following line may increment the counter and x in parallel.
# The counter thread may get ahead of the other thread, but not the
# other way around. So you may see things like
# [9996] x:[9987]
# meaning that the counter thread is on iteration 9996,
# while the other thread is on iteration 9987
print(sess.run(out).shape)




```






	
tensorflow.zeros(shape, dtype=tf.float32, name=None)

	Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

>>> tf.zeros([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int32)>






	参数

	
	shape – A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.


	dtype – The DType of an element in the resulting Tensor.


	name – Optional string. A name for the operation.






	返回

	A Tensor with all elements set to zero.










	
tensorflow.zeros_initializer

	tensorflow.python.ops.init_ops_v2.Zeros 的别名






	
tensorflow.zeros_like(input, dtype=None, name=None)

	Creates a tensor with all elements set to zero.

See also tf.zeros.

Given a single tensor or array-like object (input), this operation returns
a tensor of the same type and shape as input with all elements set to zero.
Optionally, you can use dtype to specify a new type for the returned tensor.

实际案例

>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.zeros_like(tensor)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
       [0, 0, 0]], dtype=int32)>





>>> tf.zeros_like(tensor, dtype=tf.float32)
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0., 0., 0.],
       [0., 0., 0.]], dtype=float32)>





>>> tf.zeros_like([[1, 2, 3], [4, 5, 6]])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
       [0, 0, 0]], dtype=int32)>






	参数

	
	input – A Tensor or array-like object.


	dtype – A type for the returned Tensor. Must be float16, float32,
float64, int8, uint8, int16, uint16, int32, int64,
complex64, complex128, bool or string (optional).


	name – A name for the operation (optional).






	返回

	A Tensor with all elements set to zero.













          

      

      

    

  

    
      
          
            
  
注解

在这一章中，我们会介绍基本概念，以便理解TensorFlow是如何工作以及如何获得本书的数据和额外资源。




TensorFlow如何工作



	引言

	TensorFlow是如何运行的

	通用TensorFlow算法概览
	导入或产生数据

	转换和规范化数据

	设置算法参数

	变量和占位符的初始化

	定义模型结构

	声明损失函数

	模型的初始化和训练

	模型的评估(可选)

	预测新结果(可选)





	总结





这里我们会介绍TensorFlow以及TensorFlow的算法是如何工作的。

[image: ../_images/01_outline.png]
下载本节 Jupyter Notebook






变量和张量的声明



	计算图

	创建张量

	创建0填充张量

	创建1填充张量

	创建常数填充张量

	由给定的数创建一个张量

	创建相似类型的张量

	创建序列张量

	创建随机张量

	创建一个符合正态分布的张量

	创建有界限的正态分布张量

	张量乱序化

	张量裁剪

	本节学习模块





本节主要介绍在TensorFlow中创建张量以及如何将它们进行初始化。我们也会介绍这些操作如何在Tensorboard中表征出来。

[image: ../_images/02_variable.png]
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使用占位符和变量



	创建变量和占位符

	创建特定的变量

	基于其他张量的形状创建张量

	常数填充变量张量

	基于序列和range来创建变量张量

	随机数变量张量

	在TensorBoard中进行变量创建的可视化





本节我们将会展示如何在TensorFlow创建变量和占位符，我们会在Tensorboard中展示出来。

[image: ../_images/03_placeholder.png]
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矩阵



	创建一个矩阵
	对角矩阵

	随机矩阵

	常数矩阵

	随机矩阵

	convert_to_tensor

	非传统意义上的矩阵





	矩阵加减法
	加法

	减法

	乘法

	矩阵的转置

	矩阵的逆(inverse)

	矩阵的本征值与向量





	本章学习模块





理解TensorFlow如何用矩阵进行工作，对理解算法很重要。

下载本章 Jupyter Notebook






操作符的声明



	div() 函数及其相关的函数

	mod() 函数

	cross() 函数

	常用的数学函数列表

	特殊数学函数列表

	自定义函数

	本节学习模块





本节将会介绍如何在TensorFlow中使用数学算式。

下载本章 Jupyter Notebook






载入激活函数



	线性整流函数(Rectifed Linear Unit)

	ReLUn函数

	S型函数(Sigmoid)

	\(\tanh\) 函数

	softsign 函数

	softplus 函数

	Exponential Linear Unit(ELU)函数

	总结

	本节学习模块





激活函数是TensorFlow为你定制的特殊函数。

[image: ../_images/06_activation_funs1.png]
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数据资源



	Iris Dataset(鸢尾属植物数据集)

	Low Birthrate Dataset (Hosted on Github)

	波士顿房价数据库(University of California at Irvine)

	MNIST Handwriting Dataset (手写数据库, Yann LeCun)




	MNIST 手写数据代码补充

	Ham/Spam Text Dataset(垃圾邮件分类, UCI)

	电影评论数据库 (Stanford)

	莎士比亚全集 (古登堡计划)

	英语-德语 文本翻译数据库 (Manythings/Tatoeba)

	CIFAR-10 数据库





在这里我们会展示如何获取数据资源，这里也有一些有用的链接供你使用。

下载本章 Jupyter Notebook






资源库



	Official Resources

	Github Tutorials and Examples

	Deep Learning Resources

	Additional Resources

	Arxiv Papers





大多数都是官方资源和文章，文章都是TensorFlow的文章和深度学习的资源。
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引言

Google在2015年11月完成了对TensorFlow的开源。自从那之后，TensorFlow [https://github.com/tensorflow/tensorflow]
已经是Github上机器学习starred最多的仓库。

为什么选择TensorFlow ? TensorFlow的受欢迎程度归因于很多方面，但是主要是因为它的计算图概念，自动微分和TensorFlow的
Python API 的架构。这些都使得程序员用TensorFlow来解决实际问题更加便捷。

Google的TensorFlow引擎有一个解决问题的独特方式。这种独特的方式使得解决机器学习问题非常有效。下面，我们会介绍TensorFlow
如何运行的基本步骤。




TensorFlow是如何运行的

在一开始的时候, TensorFlow中的计算可能看起来毫无必要的复杂. 但其实其中是有原因的: 也正因为TensorFlow处理计算的方式，发展
更为复杂的计算也就相对来说更为简单。这一节呢，会带领你领略一个TensorFlow算法通常工作的方式.

现在呢，TensorFlow已经被所有的主流操作系统(Windows, Linux 和 Mac)所支持。通过这本书呢，我们只关心TensorFlow的Python库
这本书呢，会用到 Python 3.x [https://www.python.org] 和 Tensorflow 0.12 + [https://www.tensorflow.org] (我们这里会用
Python 3.7 和 TensorFlow 1.8 版本)。虽然说TensorFlow可以在CPU上运行，但是它在GPU(Graphic Processing Unit)运行得更快。
英伟达(Nvidia) Compute Capability 3.0+的显卡现在也支持TensorFlow。如果你想要在GPU上运行，你需要下载并安装 Nvidia Cuda Toolkit [https://developer.nvidia.com/cuda-downloads]。 有些章节可能还依赖安装Scipy, Numpy和Scikit-learn。你可以通过下载下面的requirements.txt, 然后运行下面的命令，
来满足这些条件。

下载 requirements.txt

$ pip install -r requirements.txt








通用TensorFlow算法概览

这里呢，我们会简单介绍一下TensorFlow算法的工作流程。大多数机器学习算法都遵循此流程。


导入或产生数据

我们所有的机器学习算法都取决于数据。在这本书中我们要么自己产生数据，要么使用外部数据源。有时候呢，因为我们想要知道算法所
塑造的模型是否能产生期望的结果，所以有时候依赖产生的数据更好一点(因为它有参考的对象)。其他的时候呢，我们需要获取公众数据，
方法我们会在这章的第八部分提到。




转换和规范化数据

有时候，数据并不是TensorFlow所能处理的正确维度。在我们使用之前，我们必须将数据进行转换。大多数算法期待的是正则化数据，
我们在这里也会用到。TensorFlow有一些内置函数可以帮助你实现数据正则化。比如：

# 低版本TensorFlow的用法
>>> data = tf.nn.batch_norm_with_global_normalization(...)
# TensorFlow 2.2的用法
>>> data = tf.nn.batch_normalization(...)








注意

tensorflow.nn.batch_normalization用法介绍



Batch normalization.

Normalizes a tensor by mean and variance, and applies (optionally) a
scale \(gamma\) to it, as well as an offset \(beta\):

\(frac{gamma(x-mu)}{sigma}+beta\)

mean, variance, offset and scale are all expected to be of one of two
shapes:



	In all generality, they can have the same number of dimensions as the
input x, with identical sizes as x for the dimensions that are not
normalized over (the ‘depth’ dimension(s)), and dimension 1 for the
others which are being normalized over.
mean and variance in this case would typically be the outputs of
tf.nn.moments(…, keepdims=True) during training, or running averages
thereof during inference.


	In the common case where the ‘depth’ dimension is the last dimension in
the input tensor x, they may be one dimensional tensors of the same
size as the ‘depth’ dimension.
This is the case for example for the common [batch, depth] layout of
fully-connected layers, and [batch, height, width, depth] for
convolutions.
mean and variance in this case would typically be the outputs of
tf.nn.moments(…, keepdims=False) during training, or running averages
thereof during inference.







See equation 11 in Algorithm 2 of source:
[Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift; S. Ioffe, C. Szegedy]
(http://arxiv.org/abs/1502.03167).


	param x

	Input Tensor of arbitrary dimensionality.



	param mean

	A mean Tensor.



	param variance

	A variance Tensor.



	param offset

	An offset Tensor, often denoted \(beta\) in equations, or
None. If present, will be added to the normalized tensor.



	param scale

	A scale Tensor, often denoted \(gamma\) in equations, or
None. If present, the scale is applied to the normalized tensor.



	param variance_epsilon

	A small float number to avoid dividing by 0.



	param name

	A name for this operation (optional).



	returns

	the normalized, scaled, offset tensor.





References

Batch Normalization - Accelerating Deep Network Training by Reducing
Internal Covariate Shift:


[Ioffe et al., 2015](http://arxiv.org/abs/1502.03167)
([pdf](http://proceedings.mlr.press/v37/ioffe15.pdf))







设置算法参数

我们使用的算法通常会有一些参数是需要我们一直保持不变的。例如，迭代次数，学习速率，或者其他的设定的参数。为了方便读者或
用户很便捷找到它们，通常将它们放在一起初始化是个很好的典范。比如：

>>> learning_rate = 0.01
>>> iterations = 1000








变量和占位符的初始化

TensorFlow是需要我们告诉它，哪些是可以改变的，哪些是不可以改变的。在损失函数最小化的优化过程中，TensorFlow会改变一些变量。
为了实现这些，我们需要通过占位符(placeholders)来传入数据。变量和占位符的大小和类型都是需要我们进行初始化的，这样呢，TensorFlow
就会知道应该怎么优化。例如：

>>> a_var = tf.constant(42)
>>> x_input = tf.placeholder(tf.float32, [None, input_size])
>>> y_input = tf.placeholder(tf.float32, [None, num_classes])








注意

tensorflow.constant用法介绍



Creates a constant tensor from a tensor-like object.

Note: All eager tf.Tensor values are immutable (in contrast to
tf.Variable). There is nothing especially _constant_ about the value
returned from tf.constant. This function it is not fundamentally different
from tf.convert_to_tensor. The name tf.constant comes from the symbolic
APIs (like tf.data or keras functional models) where the value is embeded
in a Const node in the tf.Graph. tf.constant is useful for asserting
that the value can be embedded that way.

If the argument dtype is not specified, then the type is inferred from
the type of value.

>>> # Constant 1-D Tensor from a python list.
>>> tf.constant([1, 2, 3, 4, 5, 6])
<tf.Tensor: shape=(6,), dtype=int32,
    numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
>>> # Or a numpy array
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> tf.constant(a)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
  array([[1, 2, 3],
         [4, 5, 6]])>





If dtype is specified the resulting tensor values are cast to the requested
dtype.

>>> tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
<tf.Tensor: shape=(6,), dtype=float64,
    numpy=array([1., 2., 3., 4., 5., 6.])>





If shape is set, the value is reshaped to match. Scalars are expanded to
fill the shape:

>>> tf.constant(0, shape=(2, 3))
  <tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[0, 0, 0],
         [0, 0, 0]], dtype=int32)>
>>> tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[1, 2, 3],
         [4, 5, 6]], dtype=int32)>





tf.constant has no effect if an eager Tensor is passed as the value, it
even transmits gradients:

>>> v = tf.Variable([0.0])
>>> with tf.GradientTape() as g:
...     loss = tf.constant(v + v)
>>> g.gradient(loss, v).numpy()
array([2.], dtype=float32)





But, since tf.constant embeds the value in the tf.Graph this fails for
symbolic tensors:

>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.constant(i)
Traceback (most recent call last):
...
NotImplementedError: ...





tf.constant will _always_ create CPU (host) tensors. In order to create
tensors on other devices, use tf.identity. (If the value is an eager
Tensor, however, the tensor will be returned unmodified as mentioned above.)

Related Ops:


	tf.convert_to_tensor is similar but:
* It has no shape argument.
* Symbolic tensors are allowed to pass through.

>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.convert_to_tensor(i)







	tf.fill: differs in a few ways:
*   tf.constant supports arbitrary constants, not just uniform scalar


Tensors like tf.fill.





	tf.fill creates an Op in the graph that is expanded at runtime, so it
can efficiently represent large tensors.


	Since tf.fill does not embed the value, it can produce dynamically
sized outputs.









	param value

	A constant value (or list) of output type dtype.



	param dtype

	The type of the elements of the resulting tensor.



	param shape

	Optional dimensions of resulting tensor.



	param name

	Optional name for the tensor.



	returns

	A Constant Tensor.



	raises

	
	TypeError – if shape is incorrectly specified or unsupported.


	ValueError – if called on a symbolic tensor.











注意

tensorflow.float32用法介绍



Represents the type of the elements in a Tensor.

The following DType objects are defined:


	tf.float16: 16-bit half-precision floating-point.


	tf.float32: 32-bit single-precision floating-point.


	tf.float64: 64-bit double-precision floating-point.


	tf.bfloat16: 16-bit truncated floating-point.


	tf.complex64: 64-bit single-precision complex.


	tf.complex128: 128-bit double-precision complex.


	tf.int8: 8-bit signed integer.


	tf.uint8: 8-bit unsigned integer.


	tf.uint16: 16-bit unsigned integer.


	tf.uint32: 32-bit unsigned integer.


	tf.uint64: 64-bit unsigned integer.


	tf.int16: 16-bit signed integer.


	tf.int32: 32-bit signed integer.


	tf.int64: 64-bit signed integer.


	tf.bool: Boolean.


	tf.string: String.


	tf.qint8: Quantized 8-bit signed integer.


	tf.quint8: Quantized 8-bit unsigned integer.


	tf.qint16: Quantized 16-bit signed integer.


	tf.quint16: Quantized 16-bit unsigned integer.


	tf.qint32: Quantized 32-bit signed integer.


	tf.resource: Handle to a mutable resource.


	tf.variant: Values of arbitrary types.




The tf.as_dtype() function converts numpy types and string type
names to a DType object.




定义模型结构

在我们有了数据，并且将我们的变量和占位符进行初始化之后，我们就可以定义模型了。这个，我们可以通过建立一个计算图来完成。
我们告诉TensorFlow哪些操作需要在变量和占位符上完成，以实现我们的模型预测。关于计算图，我们会在第二章详细描述。
在这里我们，我们先看一下定义模型结构的例子：

# 低版本TensorFlow的用法
>>> y_pred = tf.add(tf.mul(x_input, weight_matrix), b_matrix)
# TensorFlow2.2的用法
>>> y_pred = tf.add(tf.multiply(x_input, weight_matrix), b_matrix)








注意

tensorflow.add用法介绍



Returns x + y element-wise.

NOTE: math.add supports broadcasting. AddN does not. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	param x

	A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.



	param y

	A Tensor. Must have the same type as x.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as x.








注意

tensorflow.multiply用法介绍



Returns an element-wise x * y.

For example:

>>> x = tf.constant(([1, 2, 3, 4]))
>>> tf.math.multiply(x, x)
<tf.Tensor: shape=(4,), dtype=..., numpy=array([ 1,  4,  9, 16], dtype=int32)>





Since tf.math.multiply will convert its arguments to Tensor`s, you can also
pass in non-`Tensor arguments:

>>> tf.math.multiply(7,6)
<tf.Tensor: shape=(), dtype=int32, numpy=42>





If x.shape is not thes same as y.shape, they will be broadcast to a
compatible shape. (More about broadcasting
[here](https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html).)

For example:

>>> x = tf.ones([1, 2]);
>>> y = tf.ones([2, 1]);
>>> x * y  # Taking advantage of operator overriding
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 1.],
     [1., 1.]], dtype=float32)>






	param x

	A Tensor. Must be one of the following types: bfloat16,
half, float32, float64, uint8, int8, uint16,
int16, int32, int64, complex64, complex128.



	param y

	A Tensor. Must have the same type as x.



	param name

	A name for the operation (optional).





Returns:

A Tensor.  Has the same type as x.


	raises

	* InvalidArgumentError – When x and y have incomptatible shapes or types.








声明损失函数

在定义模型之后，我们就可以用TensorFlow算出结果了。这时候，我们需要定义一个损失函数。损失函数是非常重要的，因为它告诉我们
我们的预测离真实值差多少。在第二章第五节中，我们会对损失函数的类型进行详细的讲解。

>>> loss = tf.reduce_mean(tf.square(y_actual – y_pred))








注意

tensorflow.reduce_mean用法介绍



Computes the mean of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis by computing the
mean of elements across the dimensions in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions are retained
with length 1.

If axis is None, all dimensions are reduced, and a tensor with a single
element is returned.

For example:

>>> x = tf.constant([[1., 1.], [2., 2.]])
>>> tf.reduce_mean(x)
<tf.Tensor: shape=(), dtype=float32, numpy=1.5>
>>> tf.reduce_mean(x, 0)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([1.5, 1.5], dtype=float32)>
>>> tf.reduce_mean(x, 1)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([1., 2.], dtype=float32)>






	param input_tensor

	The tensor to reduce. Should have numeric type.



	param axis

	The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).



	param keepdims

	If true, retains reduced dimensions with length 1.



	param name

	A name for the operation (optional).



	returns

	The reduced tensor.





@compatibility(numpy)
Equivalent to np.mean

Please note that np.mean has a dtype parameter that could be used to
specify the output type. By default this is dtype=float64. On the other
hand, tf.reduce_mean has an aggressive type inference from input_tensor,
for example:

>>> x = tf.constant([1, 0, 1, 0])
>>> tf.reduce_mean(x)
<tf.Tensor: shape=(), dtype=int32, numpy=0>
>>> y = tf.constant([1., 0., 1., 0.])
>>> tf.reduce_mean(y)
<tf.Tensor: shape=(), dtype=float32, numpy=0.5>





@end_compatibility




注意

tensorflow.square用法介绍



Computes square of x element-wise.

I.e., \(y = x * x = x^2\).

>>> tf.math.square([-2., 0., 3.])
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([4., 0., 9.], dtype=float32)>






	param x

	A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.square(x.values, …), x.dense_shape)








模型的初始化和训练

既然我们现在设置好了一切，我们可以创建一个实例或者计算图，然后通过占位符将数据传入，并通过训练让TensorFlow改变变量
来更好预测我们的训练数据。这里举出一个初始化计算图的一种方式：

>>> with tf.Session(graph=graph) as session:
         ...
>>> session.run(...)
         ...





需要注意的是，我们也可以这样初始化计算图：

>>> session = tf.Session(graph=graph)
>>> session.run(…)








模型的评估(可选)

一旦我们建立并训练模型，我们应当通过查看它的新数据的预测情况，来评估这个模型。




预测新结果(可选)

同样，知道如何预测性新的，不可知的数据也很重要。幸运的是，如果我们完成模型的训练之后，我们可以通过训练后的模型
来做这些事情。






总结

在TensorFlow中，我们在程序进行训练并改变变量来预测变量之前，必须先建立数据，变量，占位符以及模型。 TensorFlow通过
计算图来完成这些。我们告诉它去最小化损失函数，而TensorFlow要通过改变变量来实现这一目标。TensorFlow知道如何改变变量，
这是因为它一直在关注模型的计算，然后自动计算每个变量的梯度。也正因为如此，我们也就知道改变它以及尝试不同数据的类型又
多么简单。

总的来说，算法在TensorFlow中会被设计成为循环的算法。我们把这个循环建成计算图，然后通过占位符来输入数据，计算计算图的
输出结果，用损失函数来比较输出结果，通过自动反向传播来改变模型中的变量，最后不断重复整个过程，直到达到设定的标准。
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重要

张量是TensorFlow在计算图上用于处理的主要数据源。我们可以把这些张量声明为变量，并将它们像占位符一样导入。首先，我们必须知道如何创建张量。

但我们创建一个张量，然后声明它为变量之后，TensorFlow在计算图中创建出了多个图结构。值得注意的是通过创建张量，TensorFlow并没有在计算图增加任何东西。我们下一节会讲到这点。



这一节主要讲解在TensorFlow中创建张量的方法。首先，我们开始加载TensorFlow并开始重设计算图。

>>> import tensorflow as tf
>>> from tensorflow.python.framework import ops
>>> ops.reset_default_graph()








注意

tensorflow.python.framework.ops.reset_default_graph模块介绍



Clears the default graph stack and resets the global default graph.

NOTE: The default graph is a property of the current thread. This
function applies only to the current thread.  Calling this function while
a tf.compat.v1.Session or tf.compat.v1.InteractiveSession is active will
result in undefined
behavior. Using any previously created tf.Operation or tf.Tensor objects
after calling this function will result in undefined behavior.
:raises: AssertionError – If this function is called within a nested graph.


计算图

用 tf.Session() 开始吧！😀

# 适用于低版本Tensorflow运行
>>> sess = tf.Session()
# 适用于2.0版本TensorFlow运行, 由于版本不同，必须先运行下面的命令run才能工作
>>> tf.compat.v1.disable_eager_execution()
# compat指的是兼容v1版本的Tensorflow
>>> sess = tf.compat.v1.Session()








创建张量

TensorFlow有一些内置函数可以用创建变量张量。例如我们可以通过 tf.zeros() 来创建一个预设形状的零张量。比如：

>>> my_tensor = tf.zeros([1,20])





然后，我们可以通过 run 方法的调用来输出张量。

>>> sess.run(my_tensor)
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
0.,  0.,  0., 0.,  0.,  0.,  0.,  0.,  0.,  0.]], dtype=float32)










创建0填充张量

>>> import tensorflow as tf
>>> row_dim, col_dim = 3, 5
>>> zero_tsr = tf.zeros([row_dim, col_dim])
>>> sess.run(zero_tsr)
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]], dtype=float32)





[row_dim, col_dim] row_dim是行维度，col_dim是列维度，需要代入具体数字才可以输出。




创建1填充张量

>>> import tensorflow as tf
>>> row_dim, col_dim = 6, 7
>>> ones_tsr = tf.ones([row_dim, col_dim])
>>> sess.run(ones_tsr)
array([[1., 1., 1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1., 1., 1.]], dtype=float32)





[row_dim, col_dim] row_dim是行维度，col_dim是列维度，同样需要代入具体数字才可以输出。




创建常数填充张量

>>> import tensorflow as tf
>>> row_dim, col_dim = 6, 7
>>> filled_tsr = tf.fill([row_dim, col_dim],42)
>>> sess.run(filled_tsr)
array([[42, 42, 42, 42, 42, 42, 42],
 [42, 42, 42, 42, 42, 42, 42],
 [42, 42, 42, 42, 42, 42, 42],
 [42, 42, 42, 42, 42, 42, 42],
 [42, 42, 42, 42, 42, 42, 42],
 [42, 42, 42, 42, 42, 42, 42]], dtype=int32)





[row_dim, col_dim] row_dim是行维度，col_dim是列维度，同样需要代入具体数字才可以输出。




由给定的数创建一个张量

>>> import tensorflow as tf
>>> constant1_tsr = tf.constant([1,2,3])
>>> sess.run(constant1_tsr)
[1 2 3]
>>> constant2_tsr = tf.constant([[1,2,3],[4,5,6],[7,8,9]])
>>> sess.run(constant2_tsr)
[[1 2 3]
 [4 5 6]
 [7 8 9]]





tf.constant([...]) 可以改变输入常数的维度来输出对应的维度的常数张量。




创建相似类型的张量

>>> zeros_similar = tf.zeros_like(constant1_tsr)
>>> sess.run(zeros_similar)
array([0, 0, 0], dtype=int32)
>>> ones_similar = tf.ones_like(constant2_tsr)
>>> sess.run(ones_similar)
array([[1, 1, 1],
 [1, 1, 1],
 [1, 1, 1]], dtype=int32)








创建序列张量

# linspace必须规定start的数是bfloat16, float16, float32, float64当中的一种
>>> linear_tsr = tf.linspace(start=0.0,stop=100,num=11)
# stop=100，最后一位数包括100
>>> sess.run(linear_tsr)
array([  0.,  10.,  20.,  30.,  40.,  50.,  60.,  70.,  80.,  90., 100.],
dtype=float32)

# range的start比较宽松，可以是整数。
>>> integer_seq_tsr = tf.range(start=6,limit=15,delta=3)
# limit=15, 最后一位数不包括15
>>> sess.run(integer_seq_tsr)
array([ 6,  9, 12], dtype=int32)








创建随机张量

# 下面创建一个符合均匀分布(uniform distribution)的随机数张量
>>> row_dim, col_dim = 8, 8
# 包含minval,不包含maxval
>>> randuif_tsr = tf.compat.v1.random_uniform([row_dim, col_dim], minval=0, maxval=1)
>>> sess.run(randuif_tsr)
array([[0.67701995, 0.18257272, 0.57032907, 0.36612427, 0.9630263 ,
  0.95663846, 0.8787807 , 0.17861104],
 [0.4416871 , 0.9086859 , 0.3647703 , 0.21749687, 0.45980632,
  0.36322677, 0.45077944, 0.18235803],
 [0.23256958, 0.7551502 , 0.574257  , 0.31542778, 0.47067642,
  0.59856176, 0.7479335 , 0.9510181 ],
 [0.7199836 , 0.96217847, 0.6937009 , 0.7456448 , 0.24289751,
  0.85406077, 0.6463398 , 0.25423837],
 [0.95849264, 0.6280341 , 0.5537604 , 0.49765468, 0.07170725,
  0.19740784, 0.6923628 , 0.6402495 ],
 [0.93710315, 0.7305033 , 0.96696365, 0.46475697, 0.06905127,
  0.7408395 , 0.712886  , 0.00653875],
 [0.5427816 , 0.22150195, 0.460876  , 0.35927665, 0.32854652,
  0.13955867, 0.56905234, 0.97424316],
 [0.05879259, 0.3620267 , 0.81892705, 0.08734441, 0.361081  ,
  0.6088749 , 0.3457687 , 0.69742644]], dtype=float32)








创建一个符合正态分布的张量

正态分布(normal distribution)

>>> row_dim, col_dim = 8, 8
>>> randnorm_tsr = tf.compat.v1.random_normal([row_dim,col_dim], mean=0.0, stddev=1.0)
>>> sess.run(randnorm_tsr)
array([[-1.3551812 ,  0.44311747, -0.07009585, -0.3532377 , -0.182757, 0.13516597,  0.4071887 ,  0.27975908],
       [ 0.42585635,  0.5364396 , -0.6653683 ,  0.35444063, -1.0977732 , -0.59936076, -0.36046746, -0.07343452],
       [-0.919484  ,  0.39717674,  0.7935889 , -0.9890499 , -1.133034  , 1.0666726 , -0.968096  ,  1.2872337 ],
       [-0.66985756, -1.1499914 ,  1.7560692 , -0.10894807,  1.1841142 , 0.22291774, -0.951817  , -0.44093087],
       [-1.0684127 , -1.0498457 ,  2.9362292 , -2.013448  ,  0.4025221 , -1.1769909 , -0.05197304, -1.4978093 ],
       [-0.38958997,  0.39442828,  0.97004807,  0.13250023, -1.2196823 , 0.70165646, -1.0563769 ,  0.10399553],
       [ 0.41292164, -0.03876609, -1.2176208 ,  0.8764762 , -0.31439155, 0.06191747, -0.87645555,  0.5363252 ],
       [-1.112473  ,  2.0940979 ,  1.3212632 , -0.14039427,  1.903088  , -1.0271009 ,  0.9657831 , -0.8105811 ]], dtype=float32)








创建有界限的正态分布张量

即截断的产生正态分布的随机数，即随机数与均值的差值若大于两倍的标准差，则重新生成。

>>> row_dim, col_dim = 8, 8
>>> runcnomr_tsr = tf.compat.v1.truncated_normal([row_dim,col_dim],mean=0.0, stddev=1.0)
>>> sess.run(runcnomr_tsr)
array([[ 0.57215023, -0.02053498,  0.06714377, -1.2676795 ,  0.33678156, 0.803336  , -0.10746168, -1.073573  ],
       [-1.6188551 ,  0.26903188, -0.94024265, -1.0895174 , -0.3667447 , -1.934491  ,  0.16837268,  0.14565438],
       [ 1.3880031 ,  0.25730732, -1.2500429 ,  1.2005805 , -0.6324095 , -0.5305861 , -0.86797935,  0.58874166],
       [-0.34581357, -0.69425064, -1.8915199 , -0.7588796 , -0.4680857 , -0.6425717 , -0.35572565,  0.33899295],
       [-0.50731635, -1.191694  ,  1.2362499 , -1.6300774 , -1.7100778 , -0.5509973 ,  1.7180538 , -0.05677445],
       [-0.6379802 ,  1.0952779 , -0.57122874,  0.35372928,  0.99445486, -0.37966916, -1.5172375 , -0.2665035 ],
       [ 1.631818  ,  0.79803437,  1.6253722 , -0.02572301, -0.1393287 , -1.8196368 ,  0.03887375,  0.5125945 ],
       [ 1.0057242 , -0.93407774, -0.06123861, -0.16788454,  0.62762713, 1.2990429 ,  0.5621885 ,  0.6616505 ]], dtype=float32)








张量乱序化

runcnorm_tsr 只是一个张量例子

>>> shuffled_output = tf.compat.v1.random_shuffle(runcnomr_tsr)
>>> sess.run(shuffled_output)
array([[-1.5790983 ,  1.390395  , -1.5734539 , -1.2803887 , -0.36437657, 0.30741617,  0.9532189 ,  0.43124342],
       [-0.21545868,  0.5560213 , -1.1023369 , -1.365619  , -1.1592077 , 1.516915  , -0.386228  ,  1.6577938 ],
       [-0.56759614, -1.7026372 , -0.39424533,  0.20800175, -0.49035162, -1.4874234 ,  0.5077964 , -0.97859126],
       [-1.657173  , -1.2724566 , -0.12424537, -0.09589671, -1.3740199 , -0.19883458, -0.24118501, -0.25363442],
       [ 1.1784359 ,  1.6380433 ,  0.22968899, -0.3419656 , -0.5073284 , -0.37669885, -0.00905402,  0.10761048],
       [ 0.94037515,  0.14280881,  0.44833976, -0.3870774 ,  0.5403837 , -0.96695757,  0.54265535, -0.56348246],
       [ 0.8507602 , -1.2580659 ,  1.1683265 ,  1.4664146 ,  0.59427595, -0.49156505, -1.1784973 ,  0.14118564],
       [ 0.2539443 , -1.3915894 , -0.6779825 , -0.66317   ,  0.01306346, 0.5949122 , -1.409377  , -0.38872847]], dtype=float32)








张量裁剪

第二个参数 cropped_size 必须是 [n,m] 格式.

>>> cropped_output = tf.compat.v1.random_crop(runcnomr_tsr,[4,4])
>>> sess.run(cropped_output)
array([[-0.2630262 ,  1.2543985 ,  0.14447008, -0.00760976],
       [-1.2469869 , -0.3482599 ,  1.4325598 ,  0.03993478],
       [-1.7399155 ,  1.0116926 , -0.22996971,  1.4531476 ],
       [-0.01253414, -1.0832093 , -1.2577766 ,  1.4000101 ]],dtype=float32)

# 张量乱序化和裁剪操作都不是原处改变(in-place changes), 但是每次运行sess.run, 得到随机张量都会不一样, 必要的时候需要赋值语句
>>> sess.run(runcnomr_tsr)
array([[-0.01128286,  0.10473254,  0.7416311 ,  0.12495294, -0.621709  , 0.08294442, -0.3259678 ,  1.9100105 ],
       [-0.7485761 ,  1.871997  ,  0.3522917 , -0.27935842, -0.14542657, -0.06015118,  0.02190878, -0.07216269],
       [ 0.17552952,  0.395008  ,  0.06362368,  0.09165095,  0.41191736, 0.4416554 ,  0.5326085 ,  0.19600478],
       [ 1.1290088 ,  1.6767063 , -0.06439265,  0.68743473, -0.76912147, -0.74357826, -0.62004423, -1.5831621 ],
       [ 0.24502024, -0.04311023,  0.36677885, -0.7533206 , -0.83164   , 1.3448423 ,  0.8730749 , -0.13600092],
       [ 0.12533237,  0.49264213,  0.48348406, -0.03921305,  1.0805569 , 0.8118515 ,  0.6512441 , -0.11669531],
       [ 0.72900176,  1.8130132 ,  1.3789786 ,  0.519455  , -1.179993  , -1.0784473 ,  1.1946204 , -1.0734705 ],
       [ 0.68626446,  1.2634999 , -0.03061075, -1.3075253 , -0.4238513 , -1.4350135 ,  0.70656526,  1.2966055 ]], dtype=float32)
>>> my_tsr = sess.run(runcnomr_tsr)

# 后面我们会谈到图像处理，可能会用到下面的代码
>>> import matplotlib.pyplot as plt
>>> %matplotlib inline
>>> image_raw_data_jpg=tf.compat.v1.gfile.GFile("yourimage.jpg","rb").read()
>>> with sess as session:
...    img_data=tf.image.decode_jpeg(image_raw_data_jpg)
...    plt.figure(1)
...    print(session.run(img_data))
...    plt.imshow(img_data.eval())
[[[249 253 254]
  [249 253 254]
  [249 253 254]
  ...
  [255 255 255]
  [255 255 255]
  [255 255 255]]

[[249 253 254]
 [249 253 254]
 [249 253 254]
 ...
 ...

# 运行了with sess as session之后, session会关闭，此时需要重新打开
>>> sess = tf.compat.v1.Session()
>>> cropped_image = tf.compat.v1.random_crop(img_data, [3, 1, 3])
>>> sess.run(cropped_image)
array([[[255, 255, 255]],

       [[255, 255, 255]],

       [[255, 255, 255]]], dtype=uint8)





下载本节 Jupyter Notebook




本节学习模块


注意

tensorflow.zeros模块介绍



Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

>>> tf.zeros([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	The DType of an element in the resulting Tensor.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to zero.






注意

tensorflow.fill模块介绍



Creates a tensor filled with a scalar value.

This operation creates a tensor of shape dims and fills it with value.

For example:

>>> tf.fill([2, 3], 9)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[9, 9, 9],
       [9, 9, 9]], dtype=int32)>





tf.fill evaluates at graph runtime and supports dynamic shapes based on
other runtime tf.Tensors, unlike tf.constant(value, shape=dims), which
embeds the value as a Const node.


	param dims

	A 1-D sequence of non-negative numbers. Represents the shape of the
output tf.Tensor. Entries should be of type: int32, int64.



	param value

	A value to fill the returned tf.Tensor.



	param name

	Optional string. The name of the output tf.Tensor.



	returns

	A tf.Tensor with shape dims and the same dtype as value.



	raises

	
	InvalidArgumentError – dims contains negative entries.


	NotFoundError – dims contains non-integer entries.








@compatibility(numpy)
Similar to np.full. In numpy, more parameters are supported. Passing a
number argument as the shape (np.full(5, value)) is valid in numpy for
specifying a 1-D shaped result, while TensorFlow does not support this syntax.
@end_compatibility


注意

tensorflow.constant模块介绍



Creates a constant tensor from a tensor-like object.

Note: All eager tf.Tensor values are immutable (in contrast to
tf.Variable). There is nothing especially _constant_ about the value
returned from tf.constant. This function it is not fundamentally different
from tf.convert_to_tensor. The name tf.constant comes from the symbolic
APIs (like tf.data or keras functional models) where the value is embeded
in a Const node in the tf.Graph. tf.constant is useful for asserting
that the value can be embedded that way.

If the argument dtype is not specified, then the type is inferred from
the type of value.

>>> # Constant 1-D Tensor from a python list.
>>> tf.constant([1, 2, 3, 4, 5, 6])
<tf.Tensor: shape=(6,), dtype=int32,
    numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
>>> # Or a numpy array
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> tf.constant(a)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
  array([[1, 2, 3],
         [4, 5, 6]])>





If dtype is specified the resulting tensor values are cast to the requested
dtype.

>>> tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
<tf.Tensor: shape=(6,), dtype=float64,
    numpy=array([1., 2., 3., 4., 5., 6.])>





If shape is set, the value is reshaped to match. Scalars are expanded to
fill the shape:

>>> tf.constant(0, shape=(2, 3))
  <tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[0, 0, 0],
         [0, 0, 0]], dtype=int32)>
>>> tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[1, 2, 3],
         [4, 5, 6]], dtype=int32)>





tf.constant has no effect if an eager Tensor is passed as the value, it
even transmits gradients:

>>> v = tf.Variable([0.0])
>>> with tf.GradientTape() as g:
...     loss = tf.constant(v + v)
>>> g.gradient(loss, v).numpy()
array([2.], dtype=float32)





But, since tf.constant embeds the value in the tf.Graph this fails for
symbolic tensors:

>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.constant(i)
Traceback (most recent call last):
...
NotImplementedError: ...





tf.constant will _always_ create CPU (host) tensors. In order to create
tensors on other devices, use tf.identity. (If the value is an eager
Tensor, however, the tensor will be returned unmodified as mentioned above.)

Related Ops:


	tf.convert_to_tensor is similar but:
* It has no shape argument.
* Symbolic tensors are allowed to pass through.

>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.convert_to_tensor(i)







	tf.fill: differs in a few ways:
*   tf.constant supports arbitrary constants, not just uniform scalar


Tensors like tf.fill.





	tf.fill creates an Op in the graph that is expanded at runtime, so it
can efficiently represent large tensors.


	Since tf.fill does not embed the value, it can produce dynamically
sized outputs.









	param value

	A constant value (or list) of output type dtype.



	param dtype

	The type of the elements of the resulting tensor.



	param shape

	Optional dimensions of resulting tensor.



	param name

	Optional name for the tensor.



	returns

	A Constant Tensor.



	raises

	
	TypeError – if shape is incorrectly specified or unsupported.


	ValueError – if called on a symbolic tensor.









注意

tensorflow.zeros_like模块介绍



Creates a tensor with all elements set to zero.

See also tf.zeros.

Given a single tensor or array-like object (input), this operation returns
a tensor of the same type and shape as input with all elements set to zero.
Optionally, you can use dtype to specify a new type for the returned tensor.

实际案例

>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.zeros_like(tensor)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
       [0, 0, 0]], dtype=int32)>





>>> tf.zeros_like(tensor, dtype=tf.float32)
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0., 0., 0.],
       [0., 0., 0.]], dtype=float32)>





>>> tf.zeros_like([[1, 2, 3], [4, 5, 6]])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
       [0, 0, 0]], dtype=int32)>






	param input

	A Tensor or array-like object.



	param dtype

	A type for the returned Tensor. Must be float16, float32,
float64, int8, uint8, int16, uint16, int32, int64,
complex64, complex128, bool or string (optional).



	param name

	A name for the operation (optional).



	returns

	A Tensor with all elements set to zero.






注意

tensorflow.ones_like模块介绍



Creates a tensor of all ones that has the same shape as the input.

See also tf.ones.

Given a single tensor (tensor), this operation returns a tensor of the
same type and shape as tensor with all elements set to 1. Optionally,
you can use dtype to specify a new type for the returned tensor.

For example:

>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.ones_like(tensor)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[1, 1, 1],
         [1, 1, 1]], dtype=int32)>






	param input

	A Tensor.



	param dtype

	A type for the returned Tensor. Must be float16, float32,
float64, int8, uint8, int16, uint16, int32, int64,
complex64, complex128, bool or string.



	param name

	A name for the operation (optional).



	returns

	A Tensor with all elements set to one.






注意

tensorflow.linspace模块介绍



Generates values in an interval.

A sequence of num evenly-spaced values are generated beginning at start.
If num > 1, the values in the sequence increase by stop - start / num - 1,
so that the last one is exactly stop.

For example:

`
tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0  11.0  12.0]
`


	param start

	A Tensor. Must be one of the following types: bfloat16, half, float32, float64.
0-D tensor. First entry in the range.



	param stop

	A Tensor. Must have the same type as start.
0-D tensor. Last entry in the range.



	param num

	A Tensor. Must be one of the following types: int32, int64.
0-D tensor. Number of values to generate.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as start.






注意

tensorflow.range模块介绍



Creates a sequence of numbers.

Creates a sequence of numbers that begins at start and extends by
increments of delta up to but not including limit.

The dtype of the resulting tensor is inferred from the inputs unless
it is provided explicitly.

Like the Python builtin range, start defaults to 0, so that
range(n) = range(0, n).

For example:

>>> start = 3
>>> limit = 18
>>> delta = 3
>>> tf.range(start, limit, delta)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([ 3,  6,  9, 12, 15], dtype=int32)>





>>> start = 3
>>> limit = 1
>>> delta = -0.5
>>> tf.range(start, limit, delta)
<tf.Tensor: shape=(4,), dtype=float32,
numpy=array([3. , 2.5, 2. , 1.5], dtype=float32)>





>>> limit = 5
>>> tf.range(limit)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([0, 1, 2, 3, 4], dtype=int32)>






	param start

	A 0-D Tensor (scalar). Acts as first entry in the range if limit
is not None; otherwise, acts as range limit and first entry defaults to 0.



	param limit

	A 0-D Tensor (scalar). Upper limit of sequence, exclusive. If None,
defaults to the value of start while the first entry of the range
defaults to 0.



	param delta

	A 0-D Tensor (scalar). Number that increments start. Defaults to
1.



	param dtype

	The type of the elements of the resulting tensor.



	param name

	A name for the operation. Defaults to “range”.



	returns

	An 1-D Tensor of type dtype.





@compatibility(numpy)
Equivalent to np.arange
@end_compatibility


注意

tensorflow.compat.v1.random_uniform模块介绍



Outputs random values from a uniform distribution.

The generated values follow a uniform distribution in the range
[minval, maxval). The lower bound minval is included in the range, while
the upper bound maxval is excluded.

For floats, the default range is [0, 1).  For ints, at least maxval must
be specified explicitly.

In the integer case, the random integers are slightly biased unless
maxval - minval is an exact power of two.  The bias is small for values of
maxval - minval significantly smaller than the range of the output (either
2**32 or 2**64).

Examples:

>>> tf.random.uniform(shape=[2])
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([..., ...], dtype=float32)>
>>> tf.random.uniform(shape=[], minval=-1., maxval=0.)
<tf.Tensor: shape=(), dtype=float32, numpy=-...>
>>> tf.random.uniform(shape=[], minval=5, maxval=10, dtype=tf.int64)
<tf.Tensor: shape=(), dtype=int64, numpy=...>





The seed argument produces a deterministic sequence of tensors across
multiple calls. To repeat that sequence, use tf.random.set_seed:

>>> tf.random.set_seed(5)
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=2>
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=0>
>>> tf.random.set_seed(5)
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=2>
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=0>





Without tf.random.set_seed but with a seed argument is specified, small
changes to function graphs or previously executed operations will change the
returned value. See tf.random.set_seed for details.


	param shape

	A 1-D integer Tensor or Python array. The shape of the output tensor.



	param minval

	A Tensor or Python value of type dtype, broadcastable with
maxval. The lower bound on the range of random values to generate
(inclusive).  Defaults to 0.



	param maxval

	A Tensor or Python value of type dtype, broadcastable with
minval. The upper bound on the range of random values to generate
(exclusive). Defaults to 1 if dtype is floating point.



	param dtype

	The type of the output: float16, float32, float64, int32,
or int64.



	param seed

	A Python integer. Used in combination with tf.random.set_seed to
create a reproducible sequence of tensors across multiple calls.



	param name

	A name for the operation (optional).



	returns

	A tensor of the specified shape filled with random uniform values.



	raises

	ValueError – If dtype is integral and maxval is not specified.






注意

tensorflow.compat.v1.random_normal模块介绍



Outputs random values from a normal distribution.

Example that generates a new set of random values every time:

>>> tf.random.set_seed(5);
>>> tf.random.normal([4], 0, 1, tf.float32)
<tf.Tensor: shape=(4,), dtype=float32, numpy=..., dtype=float32)>





Example that outputs a reproducible result:

>>> tf.random.set_seed(5);
>>> tf.random.normal([2,2], 0, 1, tf.float32, seed=1)
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[-1.3768897 , -0.01258316],
      [-0.169515   ,  1.0824056 ]], dtype=float32)>





In this case, we are setting both the global and operation-level seed to
ensure this result is reproducible.  See tf.random.set_seed for more
information.


	param shape

	A 1-D integer Tensor or Python array. The shape of the output tensor.



	param mean

	A Tensor or Python value of type dtype, broadcastable with stddev.
The mean of the normal distribution.



	param stddev

	A Tensor or Python value of type dtype, broadcastable with mean.
The standard deviation of the normal distribution.



	param dtype

	The type of the output.



	param seed

	A Python integer. Used to create a random seed for the distribution.
See
tf.random.set_seed
for behavior.



	param name

	A name for the operation (optional).



	returns

	A tensor of the specified shape filled with random normal values.






注意

tensorflow.compat.v1.truncated_normal模块介绍



Outputs random values from a truncated normal distribution.

The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.


	param shape

	A 1-D integer Tensor or Python array. The shape of the output tensor.



	param mean

	A 0-D Tensor or Python value of type dtype. The mean of the
truncated normal distribution.



	param stddev

	A 0-D Tensor or Python value of type dtype. The standard deviation
of the normal distribution, before truncation.



	param dtype

	The type of the output.



	param seed

	A Python integer. Used to create a random seed for the distribution.
See
tf.random.set_seed
for behavior.



	param name

	A name for the operation (optional).



	returns

	A tensor of the specified shape filled with random truncated normal values.






注意

tensorflow.compat.v1.random_shuffle模块介绍



Randomly shuffles a tensor along its first dimension.

The tensor is shuffled along dimension 0, such that each value[j] is mapped
to one and only one output[i]. For example, a mapping that might occur for a
3x2 tensor is:

```python
[[1, 2],       [[5, 6],


[3, 4],  ==>   [1, 2],
[5, 6]]        [3, 4]]




```


	param value

	A Tensor to be shuffled.



	param seed

	A Python integer. Used to create a random seed for the distribution.
See
tf.random.set_seed
for behavior.



	param name

	A name for the operation (optional).



	returns

	A tensor of same shape and type as value, shuffled along its first
dimension.






注意

tensorflow.compat.v1.random_crop模块介绍



Randomly crops a tensor to a given size.

Slices a shape size portion out of value at a uniformly chosen offset.
Requires value.shape >= size.

If a dimension should not be cropped, pass the full size of that dimension.
For example, RGB images can be cropped with
size = [crop_height, crop_width, 3].


	param value

	Input tensor to crop.



	param size

	1-D tensor with size the rank of value.



	param seed

	Python integer. Used to create a random seed. See
tf.random.set_seed
for behavior.



	param name

	A name for this operation (optional).



	returns

	A cropped tensor of the same rank as value and shape size.






注意

tensorflow.compat.v1.gfile.GFile模块介绍(选修)



File I/O wrappers without thread locking.

The main roles of the tf.io.gfile module are:


	To provide an API that is close to Python’s file I/O objects, and


	To provide an implementation based on TensorFlow’s C++ FileSystem API.




The C++ FileSystem API supports multiple file system implementations,
including local files, Google Cloud Storage (using a gs:// prefix, and
HDFS (using an hdfs:// prefix). TensorFlow exports these as tf.io.gfile,
so that you can use these implementations for saving and loading checkpoints,
writing to TensorBoard logs, and accessing training data (among other uses).
However, if all your files are local, you can use the regular Python file
API without any problem.

Note: though similar to Python’s I/O implementation, there are semantic
differences to make tf.io.gfile more efficient for backing filesystems. For
example, a write mode file will not be opened until the first write call, to
minimize RPC invocations in network filesystems.


	
tensorflow.compat.v1.gfile.GFile.mode

	Returns the mode in which the file was opened.






	
tensorflow.compat.v1.gfile.GFile.name

	Returns the file name.






注意

tensorflow.image.decode_jpeg模块介绍(选修)



Decode a JPEG-encoded image to a uint8 tensor.

The attr channels indicates the desired number of color channels for the
decoded image.

Accepted values are:


	0: Use the number of channels in the JPEG-encoded image.


	1: output a grayscale image.


	3: output an RGB image.




If needed, the JPEG-encoded image is transformed to match the requested number
of color channels.

The attr ratio allows downscaling the image by an integer factor during
decoding.  Allowed values are: 1, 2, 4, and 8.  This is much faster than
downscaling the image later.

This op also supports decoding PNGs and non-animated GIFs since the interface is
the same, though it is cleaner to use tf.image.decode_image.


	param contents

	A Tensor of type string. 0-D.  The JPEG-encoded image.



	param channels

	An optional int. Defaults to 0.
Number of color channels for the decoded image.



	param ratio

	An optional int. Defaults to 1. Downscaling ratio.



	param fancy_upscaling

	An optional bool. Defaults to True.
If true use a slower but nicer upscaling of the
chroma planes (yuv420/422 only).



	param try_recover_truncated

	An optional bool. Defaults to False.
If true try to recover an image from truncated input.



	param acceptable_fraction

	An optional float. Defaults to 1.
The minimum required fraction of lines before a truncated
input is accepted.



	param dct_method

	An optional string. Defaults to “”.
string specifying a hint about the algorithm used for
decompression.  Defaults to “” which maps to a system-specific
default.  Currently valid values are [“INTEGER_FAST”,
“INTEGER_ACCURATE”].  The hint may be ignored (e.g., the internal
jpeg library changes to a version that does not have that specific
option.)



	param name

	A name for the operation (optional).



	returns

	A Tensor of type uint8.
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创建变量和占位符

现在我们知道如何创建张量，我们可以进一步探讨如何将张量用 Variable() 函数打包来创建相应的变量。

我们也可以将任何 numpy array 转变成Python的列表，或者将常数用 convert_to_tensor() 转化成张量。值得注意的是， convert_to_tensor 也接受张量，以便我们想通过函数来计算。

区分占位符和变量是十分重要的。变量是算法的参数而TensorFlow一直都在改变这些变量来优化算法。占位符是允许你输入特定类型和大小的数据的一类对象，这类对象的结果取决于计算图的计算结果，比如计算结果的期望值。

>>> my_var = tf.Variable(tf.zeros([1,20]))
>>> sess.run(my_var)
Traceback (most recent call last):
...
FailedPreconditionError: 2 root error(s) found.





需要注意的是，直接运行 sess.run(my_var) 会产生一个错误。因为TensorFlows是运用计算图来运作的，我们需要对变量进行初始化才能输出结果。后面，我们可能会碰到很多
初始化操作。对于这个代码来说，我们可以调用 my_var.initializer 来对一个变量初始化。

>>> sess.run(my_var.initializer)
>>> sess.run(my_var)
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
      0.,  0.,  0.,  0.,  0.,  0.,  0.]], dtype=float32)





初始化是用对应的方法将变量放在计算图上。这里有一简单初始化的实例:

>>> my_var1 = tf.Variable(tf.zeros([2,3]))
>>> sess = tf.compat.v1.Session()
# 初始化全局变量
>>> initialize_op = tf.compat.v1.global_variables_initializer()
>>> sess.run(initialize_op)





可以通过Tensorboard来查看创建并初始化变量之后的计算图。

占位符，顾名思义，就是占据一定的位置，用于在计算图中输入数据。占位符可以通过 feed_dict 参数来输入数据。为了将占位符放在计算图上，我们至少对占位符进行一次运算。我们初始化图谱，把 x 声明成一个占位符，将 y 定义成与 x 相等，也就是返回 x ，然后将数据传入 x 的占位符并运行等式操作 y=x 。值得注意的是，TensorFlow不会返回一个在feed dictionary中自引占位符(现版本是可以返回的)。下面是举一个例子：

>>> import numpy as np
>>> sess = tf.compat.v1.Session()
>>> x = tf.compat.v1.placeholder(tf.float32,shape=[2,2])
>>> y = tf.compat.v1.identity(x)
>>> x_vals = np.random.rand(2,2)
>>> sess.run(y, feed_dict={x: x_vals})
array([[0.8200612 , 0.53398275],
 [0.5647656 , 0.84022015]], dtype=float32)

>>> sess.run(x,feed_dict={x: x_vals})
array([[0.8200612 , 0.53398275],
 [0.5647656 , 0.84022015]], dtype=float32)





在计算图运行的过程中，我们还需要告诉TensorFlow何时初始化我们创建的变量。TensorFlow必须知道何时何处初始化变量。尽管每个变量名都有 initializer 方法， 但是通常情况下，最普遍的方法就是用 helper 函数，也就是 global_variables_initializer() 。 这个函数在计算图中创建了一个操作，让所有的变量都进行了初始化:

>>> initializer_op = tf.compat.v1.global_variables_initializer()





但是如果我们想基于初始化另一个变量的结果来对我们想要创建的变量进行初始化，我们需要按照顺序进行初始化，比如：

>>> sess = tf.compat.v1.Session()
>>> first_var = tf.Variable(tf.zeros([2,3]))
>>> sess.run(first_var.initializer)
# 取决于第一个变量
>>> second_var = tf.Variable(tf.zeros_like(first_var))
>>> sess.run(second_var.initializer)








创建特定的变量

首先，让我们通过声明行与列的大小来创建特定大小的变量吧。😈

>>> row_dim = 2
>>> col_dim = 3





将变量初始化为0填充张量或1填充张量。

>>> zero_var = tf.Variable(tf.zeros([row_dim, col_dim]))
>>> ones_var = tf.Variable(tf.ones([row_dim, col_dim]))





同样，我们也需要将变量进行初始化然后才能输出结果。

>>> sess.run(zero_var.initializer)
>>> sess.run(ones_var.initializer)
>>> print(sess.run(zero_var))
[[ 0.  0.  0.]
[ 0.  0.  0.]]
>>> print(sess.run(ones_var))
[[ 1.  1.  1.]
[ 1.  1.  1.]]








基于其他张量的形状创建张量

如果一个变量张量的形状取决于另一个变量张量，那么我们可以用TensorFlow的内置函数 ones_like() 和 zeros_like()

>>> zero_similar = tf.Variable(tf.zeros_like(zero_var))
>>> ones_similar = tf.Variable(tf.ones_like(ones_var))
>>> sess.run(ones_similar.initializer)
>>> sess.run(zero_similar.initializer)
>>> print(sess.run(ones_similar))
[[ 1.  1.  1.]
[ 1.  1.  1.]]
>>> print(sess.run(zero_similar))
[[ 0.  0.  0.]
[ 0.  0.  0.]]








常数填充变量张量

这里我们展示一下如何创建常数填充变量张量

>>> fill_var = tf.Variable(tf.fill([row_dim, col_dim], -1))
>>> sess.run(fill_var.initializer)
>>> print(sess.run(fill_var))
[[-1 -1 -1]
[-1 -1 -1]]





我们也可以通过一个数组或者常数列表来创建一个变量张量。

# 通过常数列表来创建张量
>>> const_var = tf.Variable(tf.constant([8, 6, 7, 5, 3, 0, 9]))
# 通过常数数组来创建变量张量
>>> const_fill_var = tf.Variable(tf.constant(-1, shape=[row_dim, col_dim]))

>>> sess.run(const_var.initializer)
>>> sess.run(const_fill_var.initializer)

>>> print(sess.run(const_var))
[8 6 7 5 3 0 9]
>>> print(sess.run(const_fill_var))
[[-1 -1 -1]
[-1 -1 -1]]








基于序列和range来创建变量张量

我们也可以通过TensorFlow中序列产生函数来创建张量。TensorFlow的函数 linspace() 和 range() 的运行方式和 python 和 numpy 中是一样的。

# TensorFlow的中linspace
>>> linear_var = tf.Variable(tf.linspace(start=0.0, stop=1.0, num=3))
# Generates [0.0, 0.5, 1.0] includes the end

# TensorFlow的range
>>> sequence_var = tf.Variable(tf.range(start=6, limit=15, delta=3))
# Generates [6, 9, 12] doesn't include the end

>>> sess.run(linear_var.initializer)
>>> sess.run(sequence_var.initializer)

>>> print(sess.run(linear_var))
[ 0.   0.5  1. ]
>>> print(sess.run(sequence_var))
[6  9 12]








随机数变量张量

我们也可以创建随机数变量张量。

>>> rnorm_var = tf.compat.v1.random_normal([row_dim, col_dim], mean=0.0, stddev=1.0)
>>> runif_var = tf.compat.v1.random_uniform([row_dim, col_dim], minval=0, maxval=4)

>>> print(sess.run(rnorm_var))
[[ 1.1772728   1.36544371 -0.89566803]
 [-0.02099477 -0.17081328  0.2029814 ]]
>>> print(sess.run(runif_var))
[[ 2.54200077  1.42822504  1.34831095]
[ 2.28473616  0.36273813  0.70220995]]








在TensorBoard中进行变量创建的可视化

为了在Tensorboard中可视化变量创建的过程(第十一章有详细的介绍)，我们需要重设计算图并进行全局变量初始化操作。

# 重设计算图
>>> ops.reset_default_graph()

# 开始一个graph session
>>> sess = tf.compat.v1.Session()

# 创建变量张量
>>> my_var = tf.Variable(tf.zeros([1,20]))

# 将summary加到Tensorboard上
>>> merged = tf.compat.v1.summary.merge_all()

# 初始化图形写入
>>> writer = tf.compat.v1.summary.FileWriter("/tmp/variable_logs", graph=sess.graph)

# 全局变量初始器
>>> initialize_op = tf.compat.v1.global_variables_initializer()

# 变量初始化
>>> sess.run(initialize_op)





下面，我们就可以在CLI(Commmand-Line-Interface)写入：

$ tensorboard --logdir=/tmp





它会告诉我们网页链接，去查看Tensorboard。默认的值为: http://localhost:6006/

[image: ../../_images/02_variable.png]
在这张图上，我们可以看到只有一个变量，这个变量初始化成零张量。灰色的区域是操作符和涉及到的常数的详细图解。右上角是省略的计算图。如果想要了解更多关于计算图的知识，请参考第十章第一部分。

下载本节 Jupyter Notebook
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重要

理解TensorFlow如何处理矩阵对于理解计算图中的数据流动是很重要的。

很多算法都依赖与矩阵运算。TensorFlow可以给我们一个简单操作来完成矩阵运算。对于下面所有的例子，我们通过运行下面的命令都先建立一个 graph session :



1 >>> import tensorflow as tf
2 >>> sess = tf.compat.v1.Session()
3 >>> from tensorflow.python.framework import ops
4 >>> ops.reset_default_graph()
5 >>> tf.compat.v1.disable_eager_execution()


创建一个矩阵

我们可以通过 numpy 数组或者嵌套列表来创建一个二维矩阵，就像我们在张量那一节所描述的那样 ( convert_to_tensor )。我们也可以使用张量创建函数并为这些函数( zeros()ones()truncated_normal() 等等)设定一个二维的形状(因为矩阵就是二维张量)。 TensorFlow也允许我们用 diag() 从一维数组或者列表中创建一个对角矩阵。例如：


对角矩阵

>>> identiy_matrix = tf.compat.v1.diag([1.0, 1.0, 1.0])
>>> print(sess.run(identiy_matrix))
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]








随机矩阵

也就是创建一个二维随机张量

>>> A = tf.compat.v1.truncated_normal([2,3])
>>> print(sess.run(A))
[[ 0.19759183 -1.436814   -1.107715  ]
 [-0.6905967  -0.19711868  0.6596967 ]]








常数矩阵

创建一个二维常数填充张量，也就是常数矩阵

>>> B = tf.fill([2,3],5.0)
>>> print(sess.run(B))
[[5. 5. 5.]
 [5. 5. 5.]]








随机矩阵

创建一个二维随机张量，也就是随机矩阵

>>> C = tf.compat.v1.random_uniform([3,2])
>>> print(sess.run(C))
[[0.3477279  0.39023817]
 [0.38307    0.8967395 ]
 [0.8217212  0.32184577]]








convert_to_tensor

使用内置函数convert_to_tensor将数组转化成张量

>>> D = tf.compat.v1.convert_to_tensor(np.array([[1.,2.,3.],[-3.,-7.,-1.],[0.,5.,-2.]]))
>>> print(sess.run(D))
[[ 1.  2.  3.]
 [-3. -7. -1.]
 [ 0.  5. -2.]]








非传统意义上的矩阵

>>> E = tf.zeros([2,3,3])
>>> print(sess.run(E))
[[[0. 0. 0.]
  [0. 0. 0.]
  [0. 0. 0.]]

 [[0. 0. 0.]
  [0. 0. 0.]
  [0. 0. 0.]]]










矩阵加减法


加法

>>> print(sess.run(A+B))
[[4.2034802 5.6497774 6.104109 ]
 [3.8710573 5.6505775 4.063135 ]]








减法

>>> print(sess.run(B-B))
[[0. 0. 0.]
 [0. 0. 0.]]








乘法

>>> print(sess.run(tf.matmul(B, identiy_matrix)))
[[5. 5. 5.]
 [5. 5. 5.]]

# 矩阵运算需要注意两个的维度，否则容易出错
>>> print(sess.run(tf.matmul(A, B)))
Traceback (most recent call last):
...
ValueError: Dimensions must be equal

# 如果对某个模块不明白，可以调用help函数
>>> help(tf.matmul)
Help on function matmul in module tensorflow.python.ops.math_ops:
...
...








矩阵的转置

>>> print(sess.run(tf.transpose(C)))
[[0.11786842 0.32758367 0.54398596]
 [0.35542393 0.546188   0.6743456 ]]

# 对于行列式，可以用
>>> print(sess.run(tf.compat.v1.matrix_determinant(D)))
-37.99999999999999








矩阵的逆(inverse)

# 注意，如果矩阵是对称正定矩阵，则矩阵的逆是基于Cholesky分解，否则基于LU分解。
>>> print(sess.run(tf.compat.v1.matrix_inverse(D)))
[[-0.5        -0.5        -0.5       ]
 [ 0.15789474  0.05263158  0.21052632]
 [ 0.39473684  0.13157895  0.02631579]]
>>> print(sess.run(tf.compat.v1.cholesky(identiy_matrix)))
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]








矩阵的本征值与向量

# 对于矩阵的本征值和本征向量，用下面的代码
>>> print(sess.run(tf.compat.v1.self_adjoint_eigvals(D)))
[-10.65907521  -0.22750691   2.88658212]
# self_adjoint_eig()输出一个数组是本征值，输出第二数组为本征向量, 这在数学上叫本征分解
>>> print(sess.run(tf.compat.v1.self_adjoint_eig(D)[0]))
[-10.65907521  -0.22750691   2.88658212]
>>> print(sess.run(tf.compat.v1.self_adjoint_eig(D)[1]))
[[ 0.21749542  0.63250104 -0.74339638]
 [ 0.84526515  0.2587998   0.46749277]
 [-0.4880805   0.73004459  0.47834331]]
>>> eigenvalues, eigenvectors = sess.run(tf.compat.v1.self_adjoint_eig(D))
>>> eigenvalues
array([-10.65907521,  -0.22750691,   2.88658212])
>>> eigenvectors
array([[ 0.21749542,  0.63250104, -0.74339638],
       [ 0.84526515,  0.2587998 ,  0.46749277],
       [-0.4880805 ,  0.73004459,  0.47834331]])










本章学习模块


注意

tf.compat.v1.diag模块介绍



Returns a diagonal tensor with a given diagonal values.

Given a diagonal, this operation returns a tensor with the diagonal and
everything else padded with zeros. The diagonal is computed as follows:

Assume diagonal has dimensions [D1,…, Dk], then the output is a tensor of
rank 2k with dimensions [D1,…, Dk, D1,…, Dk] where:

output[i1,…, ik, i1,…, ik] = diagonal[i1, …, ik] and 0 everywhere else.

For example:

```
# ‘diagonal’ is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]


[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]]




```


	param diagonal

	A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.
Rank k tensor where k is at most 1.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as diagonal.






注意

tf.compat.v1.convert_to_tensor模块介绍



Converts the given value to a Tensor.

This function converts Python objects of various types to Tensor
objects. It accepts Tensor objects, numpy arrays, Python lists,
and Python scalars. For example:

```python
import numpy as np


	def my_func(arg):

	arg = tf.convert_to_tensor(arg, dtype=tf.float32)
return tf.matmul(arg, arg) + arg





# The following calls are equivalent.
value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))
value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])
value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))
```

This function can be useful when composing a new operation in Python
(such as my_func in the example above). All standard Python op
constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,
and scalars in addition to Tensor objects.


	Note: This function diverges from default Numpy behavior for float and

	string types when None is present in a Python list or scalar. Rather
than silently converting None values, an error will be thrown.






	param value

	An object whose type has a registered Tensor conversion function.



	param dtype

	Optional element type for the returned tensor. If missing, the type
is inferred from the type of value.



	param name

	Optional name to use if a new Tensor is created.



	param preferred_dtype

	Optional element type for the returned tensor, used when
dtype is None. In some cases, a caller may not have a dtype in mind when
converting to a tensor, so preferred_dtype can be used as a soft
preference.  If the conversion to preferred_dtype is not possible, this
argument has no effect.



	param dtype_hint

	same meaning as preferred_dtype, and overrides it.



	returns

	A Tensor based on value.



	raises

	
	TypeError – If no conversion function is registered for value to dtype.


	RuntimeError – If a registered conversion function returns an invalid value.


	ValueError – If the value is a tensor not of given dtype in graph mode.









注意

tf.matmul模块介绍



Multiplies matrix a by matrix b, producing a * b.

The inputs must, following any transpositions, be tensors of rank >= 2
where the inner 2 dimensions specify valid matrix multiplication dimensions,
and any further outer dimensions specify matching batch size.

Both matrices must be of the same type. The supported types are:
float16, float32, float64, int32, complex64, complex128.

Either matrix can be transposed or adjointed (conjugated and transposed) on
the fly by setting one of the corresponding flag to True. These are False
by default.

If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse or b_is_sparse flag to True. These are False by default.
This optimization is only available for plain matrices (rank-2 tensors) with
datatypes bfloat16 or float32.

A simple 2-D tensor matrix multiplication:

>>> a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
>>> a  # 2-D tensor
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)>
>>> b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
>>> b  # 2-D tensor
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[ 7,  8],
       [ 9, 10],
       [11, 12]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c  # `a` * `b`
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 58,  64],
       [139, 154]], dtype=int32)>





A batch matrix multiplication with batch shape [2]:

>>> a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
>>> a  # 3-D tensor
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]], dtype=int32)>
>>> b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
>>> b  # 3-D tensor
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[13, 14],
        [15, 16],
        [17, 18]],
       [[19, 20],
        [21, 22],
        [23, 24]]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c  # `a` * `b`
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
        [229, 244]],
       [[508, 532],
        [697, 730]]], dtype=int32)>





Since python >= 3.5 the @ operator is supported
(see [PEP 465](https://www.python.org/dev/peps/pep-0465/)). In TensorFlow,
it simply calls the tf.matmul() function, so the following lines are
equivalent:

>>> d = a @ b @ [[10], [11]]
>>> d = tf.matmul(tf.matmul(a, b), [[10], [11]])






	param a

	tf.Tensor of type float16, float32, float64, int32,
complex64, complex128 and rank > 1.



	param b

	tf.Tensor with same type and rank as a.



	param transpose_a

	If True, a is transposed before multiplication.



	param transpose_b

	If True, b is transposed before multiplication.



	param adjoint_a

	If True, a is conjugated and transposed before
multiplication.



	param adjoint_b

	If True, b is conjugated and transposed before
multiplication.



	param a_is_sparse

	If True, a is treated as a sparse matrix. Notice, this
does not support `tf.sparse.SparseTensor`, it just makes optimizations
that assume most values in a are zero.
See tf.sparse.sparse_dense_matmul
for some support for tf.SparseTensor multiplication.



	param b_is_sparse

	If True, b is treated as a sparse matrix. Notice, this
does not support `tf.sparse.SparseTensor`, it just makes optimizations
that assume most values in a are zero.
See tf.sparse.sparse_dense_matmul
for some support for tf.SparseTensor multiplication.



	param name

	Name for the operation (optional).



	returns

	A tf.Tensor of the same type as a and b where each inner-most matrix
is the product of the corresponding matrices in a and b, e.g. if all
transpose or adjoint attributes are False:

output[…, i, j] = sum_k (a[…, i, k] * b[…, k, j]),
for all indices i, j.

Note: This is matrix product, not element-wise product.



	raises

	ValueError – If transpose_a and adjoint_a, or transpose_b and
adjoint_b are both set to True.






注意

tf.transpose模块介绍



Transposes a, where a is a Tensor.

Permutes the dimensions according to the value of perm.

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1…0), where n is the rank
of the input tensor. Hence by default, this operation performs a regular
matrix transpose on 2-D input Tensors.

If conjugate is True and a.dtype is either complex64 or complex128
then the values of a are conjugated and transposed.

@compatibility(numpy)
In numpy transposes are memory-efficient constant time operations as they
simply return a new view of the same data with adjusted strides.

TensorFlow does not support strides, so transpose returns a new tensor with
the items permuted.
@end_compatibility

For example:

>>> x = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.transpose(x)
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[1, 4],
       [2, 5],
       [3, 6]], dtype=int32)>





Equivalently, you could call tf.transpose(x, perm=[1, 0]).

If x is complex, setting conjugate=True gives the conjugate transpose:

>>> x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
...                  [4 + 4j, 5 + 5j, 6 + 6j]])
>>> tf.transpose(x, conjugate=True)
<tf.Tensor: shape=(3, 2), dtype=complex128, numpy=
array([[1.-1.j, 4.-4.j],
       [2.-2.j, 5.-5.j],
       [3.-3.j, 6.-6.j]])>





‘perm’ is more useful for n-dimensional tensors where n > 2:

>>> x = tf.constant([[[ 1,  2,  3],
...                   [ 4,  5,  6]],
...                  [[ 7,  8,  9],
...                   [10, 11, 12]]])





As above, simply calling tf.transpose will default to perm=[2,1,0].

To take the transpose of the matrices in dimension-0 (such as when you are
transposing matrices where 0 is the batch dimesnion), you would set
perm=[0,2,1].

>>> tf.transpose(x, perm=[0, 2, 1])
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[ 1,  4],
        [ 2,  5],
        [ 3,  6]],
        [[ 7, 10],
        [ 8, 11],
        [ 9, 12]]], dtype=int32)>





Note: This has a shorthand linalg.matrix_transpose):


	param a

	A Tensor.



	param perm

	A permutation of the dimensions of a.  This should be a vector.



	param conjugate

	Optional bool. Setting it to True is mathematically equivalent
to tf.math.conj(tf.transpose(input)).



	param name

	A name for the operation (optional).



	returns

	A transposed Tensor.






注意

tf.compat.v1.matrix_determinant模块介绍



Computes the determinant of one or more square matrices.

The input is a tensor of shape […, M, M] whose inner-most 2 dimensions
form square matrices. The output is a tensor containing the determinants
for all input submatrices […, :, :].


	param input

	A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.
Shape is […, M, M].



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as input.






注意

tf.compat.v1.matrix_inverse模块介绍



Computes the inverse of one or more square invertible matrices or their

adjoints (conjugate transposes).

The input is a tensor of shape […, M, M] whose inner-most 2 dimensions
form square matrices. The output is a tensor of the same shape as the input
containing the inverse for all input submatrices […, :, :].

The op uses LU decomposition with partial pivoting to compute the inverses.

If a matrix is not invertible there is no guarantee what the op does. It
may detect the condition and raise an exception or it may simply return a
garbage result.


	param input

	A Tensor. Must be one of the following types: float64, float32, half, complex64, complex128.
Shape is […, M, M].



	param adjoint

	An optional bool. Defaults to False.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as input.






注意

tf.compat.v1.cholesky模块介绍



Computes the Cholesky decomposition of one or more square matrices.

The input is a tensor of shape […, M, M] whose inner-most 2 dimensions
form square matrices.

The input has to be symmetric and positive definite. Only the lower-triangular
part of the input will be used for this operation. The upper-triangular part
will not be read.

The output is a tensor of the same shape as the input
containing the Cholesky decompositions for all input submatrices […, :, :].

Note: The gradient computation on GPU is faster for large matrices but
not for large batch dimensions when the submatrices are small. In this
case it might be faster to use the CPU.


	param input

	A Tensor. Must be one of the following types: float64, float32, half, complex64, complex128.
Shape is […, M, M].



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as input.






注意

tf.compat.v1.self_adjoint_eigvals模块介绍



Computes the eigen decomposition of a batch of self-adjoint matrices.

Computes the eigenvalues and eigenvectors of the innermost N-by-N matrices
in tensor such that
tensor[…,:,:] * v[…, :,i] = e[…, i] * v[…,:,i], for i=0…N-1.


	param tensor

	Tensor of shape […, N, N]. Only the lower triangular part of
each inner inner matrix is referenced.



	param name

	string, optional name of the operation.



	returns

	Eigenvalues. Shape is […, N]. Sorted in non-decreasing order.
v: Eigenvectors. Shape is […, N, N]. The columns of the inner most


matrices contain eigenvectors of the corresponding matrices in tensor






	rtype

	e









          

      

      

    

  

  
    
    div() 函数及其相关的函数
    

    
 
  

    
      
          
            
  现在我们必须知道可以加到TensorFlow计算图上的其他计算工具。
除了标准的算式运算外，TensorFlow提供给我们更多需要注意的运算符，我们应当在继续之前知道如何使用它们。同样，我们需要运行一下下面的命令来创建一个 graph session:

>>> import numpy as np
>>> import tensorflow as tf
>>> from tensorflow.python.framework import ops
>>> ops.reset_default_graph()
>>> tf.compat.v1.disable_eager_execution()
>>> sess = tf.compat.v1.Session()





TensorFlow对张量有标准的运算符：add() , sub() , mul() , 和 div() . 需要指出的是，这部分所有的运算除了特别说明外，都会输出element-wise式输出结果。


div() 函数及其相关的函数

div() 返回与输出结果类型相同的结果。这意味着如果输入的是整数的话，它返回 the floor of the division (是 Python 2 的近亲)。为了产生 Python 3 版本的结果，TensorFlow提供了 truediv() 函数，如下：

>>> print(sess.run(tf.compat.v1.div(3,4)))
0
>>> print(sess.run(tf.compat.v1.truediv(3,4)))
0.75
>>> print(sess.run(tf.compat.v1.div(3.0,4)))
0.75





如果我们浮点数然后希望做一个整数除法，我们可以用 floordiv() 函数。 需要注意的是，我们仍然返回一个浮点数，但是已经被近似成最近邻的整数。如下：

>>> print(sess.run(tf.compat.v1.floordiv(3.0,4.0)))
0.0








mod() 函数

另外一个重要的函数就是 mod() . 这个函数返回除法的余数。如下：

>>> print(sess.run(tf.compat.v1.mod(22,5)))
2
>>> print(sess.run(tf.compat.v1.mod(22.0,5)))
2.0








cross() 函数

两个张量的叉乘可以通过调用 tensorflow.compat.v1.cross() 函数来实现。记住，这里的叉乘只定义到俩个三维向量，所以它仅支持俩个三维向量。如下：

>>> print(sess.run(tf.compat.v1.cross([1.,2.,3.],[4.,5.,6.])))
[-3.  6. -3.]
>>> help(tf.compat.v1.cross)





以下是 help() 函数返回的结果：


	
cross(a, b, name=None)

	Compute the pairwise cross product.

a and b must be the same shape; they can either be simple 3-element vectors, or any shape where the innermost dimension is 3. In the latter case, each pair of corresponding 3-element vectors is cross-multiplied independently.


	参数

	
	a (Tensor) – Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64. A tensor containing 3-element vectors.


	b (Tensor) – Must have the same type as a.


	name – A name for the operation (optional).






	返回类型

	Tensor



	返回

	Has the same type as a.












常用的数学函数列表


注意

所有这些函数都是element-wise式运行。







	常用数学函数

	描述





	tensorflow.compat.v1.abs()

	输入张量的绝对值



	tensorflow.compat.v1.ceil()

	输入张量的向上舍入函数



	tensorflow.compat.v1.cos()

	输入张量的Cosine函数



	tensorflow.compat.v1.exp()

	输入张量的exp函数



	tensorflow.compat.v1.floor()

	输入张量的向下舍入函数



	tensorflow.compat.v1.inv()

	输入张量的倒数(用不了)



	tensorflow.compat.v1.log()

	输入张量的自然对数



	tensorflow.compat.v1.maximum()

	输入张量的最大值



	tensorflow.compat.v1.minimum

	输入张量的最小值



	tensorflow.compat.v1.negative()

	输入张量的负值



	tensorflow.compat.v1.pow()

	第一张量上升到第二张量元素



	tensorflow.compat.v1.round()

	输入张量的近似



	tensorflow.compat.v1.rsqrt()

	输入张量平方根的倒数



	tensorflow.compat.v1.sign()

	输出 -1, 0, 或 1 取决输入张量的符号



	tensorflow.compat.v1.sin()

	输入张量的Sine函数



	tensorflow.compat.v1.sqrt()

	输入张量的平方根



	tensorflow.compat.v1.square()

	输入张量的平方








以下是这些常用数学函数的实例：

>>> A = tf.fill([3,3],1.0)
>>> B = tf.constant([[-1.,-2.,-3.],[-4.,-5.,-6.],[-7.,-8.,-9.]])

>>> sess.run(tf.compat.v1.abs(B))
array([[1., 2., 3.],
       [4., 5., 6.],
       [7., 8., 9.]], dtype=float32)

>>> sess.run(tf.compat.v1.ceil(B))
array([[-1., -2., -3.],
       [-4., -5., -6.],
       [-7., -8., -9.]], dtype=float32)

>>> sess.run(tf.compat.v1.cos(B))
array([[ 0.5403023 , -0.4161468 , -0.9899925 ],
       [-0.6536436 ,  0.28366217,  0.96017027],
       [ 0.75390226, -0.14550003, -0.91113025]], dtype=float32)

>>> C = sess.run(tf.compat.v1.ceil(sess.run(tf.compat.v1.cos(B))))
>>> C
array([[ 1., -0., -0.],
       [-0.,  1.,  1.],
       [ 1., -0., -0.]], dtype=float32)

>>> sess.run(tf.compat.v1.exp(B))
array([[3.6787945e-01, 1.3533528e-01, 4.9787067e-02],
       [1.8315639e-02, 6.7379470e-03, 2.4787523e-03],
       [9.1188197e-04, 3.3546262e-04, 1.2340980e-04]], dtype=float32)

>>> D = sess.run(tf.compat.v1.floor(sess.run(tf.compat.v1.cos(B))))
>>> D
array([[ 0., -1., -1.],
       [-1.,  0.,  0.],
       [ 0., -1., -1.]], dtype=float32)

>>> sess.run(tf.compat.v1.log(A))
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]], dtype=float32)

>>> sess.run(tf.compat.v1.maximum(A,C))
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]], dtype=float32)

>>> sess.run(tf.compat.v1.minimum(A,C))
array([[ 1., -0., -0.],
       [-0.,  1.,  1.],
       [ 1., -0., -0.]], dtype=float32)

>>> sess.run(tf.compat.v1.negative(B))
array([[1., 2., 3.],
       [4., 5., 6.],
       [7., 8., 9.]], dtype=float32)

# 平方
>>> sess.run(tf.compat.v1.pow(B,2))
array([[ 1.,  4.,  9.],
       [16., 25., 36.],
       [49., 64., 81.]], dtype=float32)

>>> sess.run(tf.compat.v1.round(C))
array([[ 1., -0., -0.],
       [-0.,  1.,  1.],
       [ 1., -0., -0.]], dtype=float32)

# rsqrt是指reverse + square root, 即求平方根之后再求倒数
>>> E = sess.run(tf.compat.v1.rsqrt(tf.compat.v1.exp(B)))
>>> E
array([[ 1.6487212,  2.7182817,  4.481689 ],
       [ 7.3890557, 12.182494 , 20.085537 ],
       [33.11545  , 54.598145 , 90.017136 ]], dtype=float32)

>>> F = sess.run(tf.compat.v1.sqrt(tf.compat.v1.exp(B)))
>>> F
array([[0.60653067, 0.36787942, 0.22313015],
       [0.13533528, 0.082085  , 0.04978707],
       [0.03019738, 0.01831564, 0.011109  ]], dtype=float32)
>>> sess.run(tf.compat.v1.multiply(E,F))
array([[1.        , 0.99999994, 0.99999994],
       [0.99999994, 1.        , 1.        ],
       [1.        , 0.9999998 , 1.        ]], dtype=float32)

>>> sess.run(tf.compat.v1.sign(A))
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]], dtype=float32)

>>> sess.run(tf.compat.v1.sign(A))
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]], dtype=float32)
>>> sess.run(tf.compat.v1.sign(B))
array([[-1., -1., -1.],
       [-1., -1., -1.],
       [-1., -1., -1.]], dtype=float32)

>>> sess.run(tf.compat.v1.sign(D))
array([[ 0., -1., -1.],
       [-1.,  0.,  0.],
       [ 0., -1., -1.]], dtype=float32)





以下是 tensorflow.compat.v1.sign 的详细介绍：


	
sign(x, name=None)

	返回矩阵元素的符号。如果 x < 0 , 返回 -1; 如果 x==0 , 返回 0; 如果 x>0 , 返回 1. 对于复数而言， 如果 x!=0, 返回 y=sign(x)=x/|x|, 否则返回 0 。


	参数

	x (Tensor) – 必须下面中个一种类型，bfloat16`, half, float32, float64, int32, int64, complex64, complex128.



	关键字参数

	name – 操作符的名称(可选)



	返回

	和 x (张量)形状



	返回类型

	Tensor









>>> sess.run(tf.compat.v1.sin(B))
array([[-0.84147096, -0.9092974 , -0.14112   ],
       [ 0.7568025 ,  0.9589243 ,  0.2794155 ],
       [-0.6569866 , -0.98935825, -0.4121185 ]], dtype=float32)

>>> sess.run(tf.compat.v1.sqrt(A))
array([[0.99999994, 0.99999994, 0.99999994],
       [0.99999994, 0.99999994, 0.99999994],
       [0.99999994, 0.99999994, 1.        ]], dtype=float32)

>>> sess.run(tf.compat.v1.square(B))
array([[ 1.,  4.,  9.],
       [16., 25., 36.],
       [49., 64., 81.]], dtype=float32)








特殊数学函数列表

这里还有一些值得注意的特殊数学函数，这些函数可能会在机器学习中出现，幸运的是，TensorFlow有一些内置函数可以调用。值得注意的是，这些函数除了特殊说明，都是元素式运行的。







	特殊数学函数

	描述





	tensorflow.compat.v1.digamma()

	Psi 函数，是 lgamma() 函数的导数



	tensorflow.compat.v1.erf()

	输入张量的高斯误差函数(元素式运行)



	tensorflow.compat.v1.erfc()

	输入张量的高斯误差补余函数



	tensorflow.compat.v1.igamma()

	下正则不完全伽玛函数



	tensorflow.compat.v1.igammac()

	上正则不完全伽玛函数



	tensorflow.compat.v1.lbeta()

	beta 函数绝对值的自然对数



	tensorflow.compat.v1.lgamma()

	gamma 函数绝对值的自然对数



	tensorflow.compat.v1.squared_difference()

	两个张量差值的平方






下面给出这些函数的实例，详情请看本节学习模块：

>>> sess.run(tf.compat.v1.digamma(E))
array([[0.16705728, 0.8049263 , 1.384306  ],
       [1.9308087 , 2.4583962 , 2.9749    ],
       [3.4848251 , 3.9908142 , 4.494435  ]], dtype=float32)

>>> sess.run(tf.compat.v1.erf(B))
array([[-0.8427007, -0.9953223, -0.999978 ],
       [-1.       , -1.       , -1.       ],
       [-1.       , -1.       , -1.       ]], dtype=float32)

>>> sess.run(tf.compat.v1.erfc(B))
array([[1.8427007, 1.9953222, 1.999978 ],
       [2.       , 2.       , 2.       ],
       [2.       , 2.       , 2.       ]], dtype=float32)

>>> sess.run(tf.compat.v1.igamma(A,E))
array([[0.8077043 , 0.93401194, 0.9886857 ],
       [0.999382  , 0.9999949 , 1.        ],
       [1.        , 1.        , 1.        ]], dtype=float32)

>>> sess.run(tf.compat.v1.igammac(A,E))
array([[1.9229566e-01, 6.5988049e-02, 1.1314288e-02],
       [6.1797921e-04, 5.1192928e-06, 1.8921789e-09],
       [4.1508981e-15, 1.9423487e-24, 0.0000000e+00]], dtype=float32)

>>> sess.run(tf.compat.v1.lbeta(E))
array([  -7.5096974,  -40.50966  , -182.8869   ], dtype=float32)

>>> sess.run(tf.compat.v1.lgamma(E))
array([[-1.0544503e-01,  4.4946167e-01,  2.4283466e+00],
       [ 7.3192654e+00,  1.7949518e+01,  3.9594162e+01],
       [ 8.1960083e+01,  1.6271490e+02,  3.1372983e+02]], dtype=float32)

# 最简单理解的函数
>>> sess.run(tf.compat.v1.squared_difference(A,B))
array([[  4.,   9.,  16.],
       [ 25.,  36.,  49.],
       [ 64.,  81., 100.]], dtype=float32)





知道哪些函数可以用，可以加到计算图上，对我们来说很重要。大多数情况下，我们只需要关注前面提到函数。我们也可以自己定义函数或者自己根据数学表达式利用前面提到的函数，如下:

# tan()函数 tan(pi/4) = 1
>>> from numpy import pi
>>> print(sess.run(tf.compat.v1.div(tf.sin(pi/4.),tf.cos(pi/4.))))
1.0








自定义函数

如果我们想在计算图中加一些没在表格中出现的函数，我们可以通过前面的函数来创建自己想要的函数。这里一个函数例子，我们可以加到我们的计算图中：

>>> def custom_polynomial(value):
...   return (tf.compat.v1.subtract(3*tf.compat.v1.square(value),value)+10)
>>> print(sess.run(custom_polynomial(11)))
362





这里我们创建了一个多项式函数：
\(f(x) = 3 \ast x^2-x+10\)




本节学习模块


注意

tensorflow.compat.v1.div函数介绍



Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.

NOTE: Prefer using the Tensor division operator or tf.divide which obey Python
3 division operator semantics.

This function divides x and y, forcing Python 2 semantics. That is, if x
and y are both integers then the result will be an integer. This is in
contrast to Python 3, where division with / is always a float while division
with // is always an integer.


	param x

	Tensor numerator of real numeric type.



	param y

	Tensor denominator of real numeric type.



	param name

	A name for the operation (optional).



	returns

	x / y returns the quotient of x and y.






注意

tensorflow.compat.v1.truediv函数介绍



Divides x / y elementwise (using Python 3 division operator semantics).

NOTE: Prefer using the Tensor operator or tf.divide which obey Python
division operator semantics.

This function forces Python 3 division operator semantics where all integer
arguments are cast to floating types first.   This op is generated by normal
x / y division in Python 3 and in Python 2.7 with
from __future__ import division.  If you want integer division that rounds
down, use x // y or tf.math.floordiv.

x and y must have the same numeric type.  If the inputs are floating
point, the output will have the same type.  If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).


	param x

	Tensor numerator of numeric type.



	param y

	Tensor denominator of numeric type.



	param name

	A name for the operation (optional).



	returns

	x / y evaluated in floating point.



	raises

	TypeError – If x and y have different dtypes.






注意

tensorflow.compat.v1.floordiv函数介绍



Divides x / y elementwise, rounding toward the most negative integer.

The same as tf.compat.v1.div(x,y) for integers, but uses
tf.floor(tf.compat.v1.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point).  This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

x and y must have the same type, and the result will have the same type
as well.


	param x

	Tensor numerator of real numeric type.



	param y

	Tensor denominator of real numeric type.



	param name

	A name for the operation (optional).



	returns

	x / y rounded down.



	raises

	TypeError – If the inputs are complex.






注意

tensorflow.compat.v1.mod函数介绍



Returns element-wise remainder of division. When x < 0 xor y < 0 is

true, this follows Python semantics in that the result here is consistent
with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.

NOTE: math.floormod supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	param x

	A Tensor. Must be one of the following types: int32, int64, bfloat16, half, float32, float64.



	param y

	A Tensor. Must have the same type as x.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as x.






注意

tensorflow.compat.v1.cross函数介绍



Compute the pairwise cross product.

a and b must be the same shape; they can either be simple 3-element vectors,
or any shape where the innermost dimension is 3. In the latter case, each pair
of corresponding 3-element vectors is cross-multiplied independently.


	param a

	A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
A tensor containing 3-element vectors.



	param b

	A Tensor. Must have the same type as a.
Another tensor, of same type and shape as a.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as a.






注意

tensorflow.compat.v1.pow函数介绍



Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

`python
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y)  # [[256, 65536], [9, 27]]
`


	param x

	A Tensor of type float16, float32, float64, int32, int64,
complex64, or complex128.



	param y

	A Tensor of type float16, float32, float64, int32, int64,
complex64, or complex128.



	param name

	A name for the operation (optional).



	returns

	A Tensor.






注意

tensorflow.compat.v1.rsqrt函数介绍



Computes reciprocal of square root of x element-wise.

For example:

>>> x = tf.constant([2., 0., -2.])
>>> tf.math.rsqrt(x)
<tf.Tensor: shape=(3,), dtype=float32,
numpy=array([0.707, inf, nan], dtype=float32)>






	param x

	A tf.Tensor. Must be one of the following types: bfloat16, half,
float32, float64. int32



	param name

	A name for the operation (optional).



	returns

	A tf.Tensor. Has the same type as x.






注意

tensorflow.compat.v1.digamma函数介绍



Computes Psi, the derivative of Lgamma (the log of the absolute value of

Gamma(x)), element-wise.


	param x

	A Tensor. Must be one of the following types: bfloat16, half, float32, float64.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as x.






注意

tensorflow.compat.v1.erf函数介绍



Computes the Gauss error function of x element-wise.


	param x

	A Tensor. Must be one of the following types: bfloat16, half, float32, float64.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.erf(x.values, …), x.dense_shape)






注意

tensorflow.compat.v1.erfc函数介绍



Computes the complementary error function of x element-wise.


	param x

	A Tensor. Must be one of the following types: bfloat16, half, float32, float64.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as x.






注意

tensorflow.compat.v1.igamma函数介绍



Compute the lower regularized incomplete Gamma function P(a, x).

The lower regularized incomplete Gamma function is defined as:

\(P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)\)

where

\(gamma(a, x) = \int_{0}^{x} t^{a-1} exp(-t) dt\)

is the lower incomplete Gamma function.

Note, above Q(a, x) (Igammac) is the upper regularized complete
Gamma function.


	param a

	A Tensor. Must be one of the following types: float32, float64.



	param x

	A Tensor. Must have the same type as a.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as a.






注意

tensorflow.compat.v1.igammac函数介绍



Compute the upper regularized incomplete Gamma function Q(a, x).

The upper regularized incomplete Gamma function is defined as:

\(Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)\)

where

\(Gamma(a, x) = int_{x}^{infty} t^{a-1} exp(-t) dt\)

is the upper incomplete Gama function.

Note, above P(a, x) (Igamma) is the lower regularized complete
Gamma function.


	param a

	A Tensor. Must be one of the following types: float32, float64.



	param x

	A Tensor. Must have the same type as a.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as a.






注意

tensorflow.compat.v1.lbeta函数介绍



Computes \(ln(|Beta(x)|)\), reducing along the last dimension.

Given one-dimensional $z = [z_1,…,z_K]$, we define

$$Beta(z) = frac{prod_j Gamma(z_j)}{Gamma(sum_j z_j)},$$

where $Gamma$ is the gamma function.

And for $n + 1$ dimensional $x$ with shape $[N_1, …, N_n, K]$, we define

$$lbeta(x)[i_1, …, i_n] = log{|Beta(x[i_1, ..., i_n, :])|}.$$

In other words, the last dimension is treated as the $z$ vector.

Note that if $z = [u, v]$, then


	$$Beta(z) = frac{Gamma(u)Gamma(v)}{Gamma(u + v)}

	= int_0^1 t^{u-1} (1 - t)^{v-1} mathrm{d}t,$$





which defines the traditional bivariate beta function.

If the last dimension is empty, we follow the convention that the sum over
the empty set is zero, and the product is one.


	param x

	A rank n + 1 Tensor, n >= 0 with type float, or double.



	param name

	A name for the operation (optional).



	returns

	The logarithm of \(|Beta(x)|\) reducing along the last dimension.






注意

tensorflow.compat.v1.lgamma函数介绍



Computes the log of the absolute value of Gamma(x) element-wise.


For positive numbers, this function computes log((input - 1)!) for every element in the tensor.
lgamma(5) = log((5-1)!) = log(4!) = log(24) = 3.1780539




Example:

`python
x = tf.constant([0, 0.5, 1, 4.5, -4, -5.6])
tf.math.lgamma(x) ==> [inf, 0.5723649, 0., 2.4537368, inf, -4.6477685]
`


	param x

	A Tensor. Must be one of the following types: bfloat16, half, float32, float64.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as x.






注意

tensorflow.compat.v1.squared_difference函数介绍



Returns (x - y)(x - y) element-wise.

NOTE: math.squared_difference supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	param x

	A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.



	param y

	A Tensor. Must have the same type as x.



	param name

	A name for the operation (optional).



	returns

	A Tensor. Has the same type as x.









          

      

      

    

  

  
    
    线性整流函数(Rectifed Linear Unit)
    

    
 
  

    
      
          
            
  当我们开始使用神经网络的时候，我们会经常用到激活函数，这是因为激活函数是任何神经网络结构中不可或缺的一部分。激活函数的目的是调整权重和偏差。在TensorFlow中，激活函数是作用在张量上非线性的操作符。它们很像前面一节的数学运算符, 应用比较广泛，但是它们主要的贡献是引入计算图中非线性的计算。同样，我们需要运行一下下面的命令来创建一个 graph session :

>>> import tensorflow.compat.v1 as tf
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from tensorflow.python.framework import ops
>>> ops.reset_default_graph()

# 下面一行命令必须放在上面命令运行完之后，不可调换,否则容易出现empty graph
>>> tf.disable_eager_execution()
>>> sess = tf.Session()





激活函数都是存在于TensorFlow中神经网络(Neural Network)库中 tensorflow.nn 。除了使用内置激活函数，我们也可以使用TensorFlow运算来设计自己的激活函数。我们可以导入预先设定的函数( import tf.nn as nn ) 或更精确一点采用 ( tf.nn )。


线性整流函数(Rectifed Linear Unit)

>>> x_vals = np.linspace(start=-10,stop=10,num=100)
>>> print(sess.run(tf.nn.relu([-3.,3.,10.])))
[ 0.  3. 10.]
>>> y_relu = sess.run(tf.nn.relu(x_vals))
>>> plt.plot(x_vals, y_relu, 'b:', label='ReLU', linewidth=2)
... plt.ylim([-5,11])
... plt.legend(loc='upper left')
... plt.show()
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  对本书的大部分内容来说，我们会依赖于数据集来拟合机器学习算法。这部分将会告诉你如何通过TensorFlow和Python来获取这些数据资源。

在TensorFlow中，有一些数据资源是Python库中内置的，有些是需要Python的脚本来下载，有些是需要在网上手动下载。 当然，所有这些数据集都是需要网络来获取数据。

首先，我们需要对TensorFlow的 graph session 进行初始化：

>>> import tensorflow.compat.v1 as tf
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from tensorflow.python.framework import ops
>>> ops.reset_default_graph()
>>> tf.disable_eager_execution()
>>> sess = tf.Session()






Iris Dataset(鸢尾属植物数据集)

这个数据集( Iris Dataset [http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris] )无可置疑地是最经典的用于机器学习的数据集，而且可能扩展到所有统计学。这个数据集采集了三种鸢尾花的 sepal length (花萼长度)， sepal width (花萼宽度)，petal length (花瓣长度)，petal width (花瓣宽度)。这三种鸢尾花分别是Iris Setosa(山鸢尾)，Iris Versicolour(杂色鸢尾)，Iris Virginica(维吉尼亚鸢尾)。总共有150项测量，每种鸢尾花有50项。为了在Python中使用这些数据集，我们使用Scikit Learn中的数据函数。

>>> from sklearn.datasets import load_iris
>>> import pandas as pd
>>> iris = load_iris()
>>> print(len(iris.data))
150
>>> print(len(iris.target))
150
>>> print(iris.data[0])
[5.1 3.5 1.4 0.2]
>>> print(set(iris.target))
{0, 1, 2}
>>> pd.DataFrame(data=iris.data, columns=iris.feature_names)
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MNIST 手写数据代码补充

因为篇幅原因，在介绍MNIST手写数据库时，没有对手写的数字可视化进行详细介绍，这里补充一些代码：

$ dataset_url = "https://modelarts-cnnorth1-market-dataset.obs.cn-north-1.myhuaweicloud.com/dataset-market/Mnist-Data-Set/archiver/Mnist-Data-Set.zip"
$ dataset_local_path = 'dataset/'
$ wget {dataset_url} -P {dataset_local_path}
$ unzip -d {dataset_local_path} -o {dataset_local_name}
$ ls $dataset_local_path
Mnist-Data-Set.zip           train-images-idx3-ubyte
t10k-images-idx3-ubyte           train-images-idx3-ubyte.gz
t10k-images-idx3-ubyte.gz  train-labels-idx1-ubyte
t10k-labels-idx1-ubyte           train-labels-idx1-ubyte.gz
t10k-labels-idx1-ubyte.gz

$ train_image = os.path.join(dataset_local_path, 'train-images-idx3-ubyte')
$ train_lable = os.path.join(dataset_local_path, 'train-labels-idx1-ubyte')
$ eval_image  = os.path.join(dataset_local_path, 't10k-images-idx3-ubyte')
$ eval_lable  = os.path.join(dataset_local_path, 't10k-labels-idx1-ubyte')

$ pip install mxnet
Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple
Collecting mxnet
Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/81/f5/d79b5b40735086ff1100c680703e0f3efc830fa455e268e9e96f3c857e93/mxnet-1.6.0-py2.py3-none-any.whl (68.7 MB)
   |████████████████████████████████| 68.7 MB 7.1 MB/s eta 0:00:01MB/s eta 0:00:31
Requirement already satisfied: numpy<2.0.0,>1.16.0 in /home/ma-user/anaconda3/envs/TensorFlow-2.1.0/lib/python3.6/site-packages (from mxnet) (1.18.4)
Requirement already satisfied: requests<3,>=2.20.0 in /home/ma-user/anaconda3/envs/TensorFlow-2.1.0/lib/python3.6/site-packages (from mxnet) (2.23.0)
Requirement already satisfied: graphviz<0.9.0,>=0.8.1 in /home/ma-user/anaconda3/envs/TensorFlow-2.1.0/lib/python3.6/site-packages (from mxnet) (0.8.1)
Requirement already satisfied: chardet<4,>=3.0.2 in /home/ma-user/anaconda3/envs/TensorFlow-2.1.0/lib/python3.6/site-packages (from requests<3,>=2.20.0->mxnet) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /home/ma-user/anaconda3/envs/TensorFlow-2.1.0/lib/python3.6/site-packages (from  requests<3,>=2.20.0->mxnet) (1.22)
Requirement already satisfied: certifi>=2017.4.17 in /home/ma-user/anaconda3/envs/TensorFlow-2.1.0/lib/python3.6/site-packages (from requests<3,>=2.20.0->mxnet) (2018.1.18)
Requirement already satisfied: idna<3,>=2.5 in /home/ma-user/anaconda3/envs/TensorFlow-2.1.0/lib/python3.6/site-packages (from requests<3,>=2.20.0->mxnet) (2.6)
Installing collected packages: mxnet
Successfully installed mxnet-1.6.0
WARNING: You are using pip version 20.1.1; however, version 20.2.1 is available.
You should consider upgrading via the '/home/ma-user/anaconda3/envs/TensorFlow-2.1.0/bin/python -m pip install --upgrade pip' command.





>>> import mxnet as mx
>>> batch_size = 128
>>> train_data = mx.io.MNISTIter(image = train_image,
...                              label = train_lable,
...                              data_shqpe = (1,28,28),
...                              batch_size = batch_size,
...                              shuffle = True,
...                              flat    = False,
...                              silent  = False)

>>> eval_data  = mx.io.MNISTIter(image = eval_image,
...                              label = eval_lable,
...                              data_shqpe = (1,28,28),
...                              batch_size = batch_size,
...                              shuffle = False)

>>> import matplotlib.pyplot as plt
>>> train_data.reset()
>>> next_batch  =  train_data.next()

>>> for i in range(128):
...   show_image  =  next_batch.data[0][i].asnumpy() * 255
...   show_image  =  show_image.astype('uint8').reshape(28, 28)
...   plt.figure(168)
...   plt.subplot(16,8,1+i)
...   plt.imshow(show_image, cmap = plt.cm.gray)

>>> plt.savefig('Handwriting.png', dpi=1000)
>>> plt.show()








Ham/Spam Text Dataset(垃圾邮件分类, UCI)

我们会用到加州大学艾文分校机器学习数据库也建立了一个垃圾邮件分类的数据库。我们可以获取.zip 文件， 并获取相应的数据。以下是它的链接 Ham/Spam Text Dataset [https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection] 。顺便提一句，如果一个数据点代表（ spam 或者不想要的广告）, 那么另外一个就是
‘ham’.

Ham/Spam Text Dataset 是一个从文本输入当中预测二进制结果（spam or ham）一个很好的数据集。 这将对自然语言处理的短文本处理(第七章)和递归神经网络(第九章)
很有用。

>>> import requests
>>> import io
>>> from zipfile import ZipFile

# Get/read zip file
>>> zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'
>>> r = requests.get(zip_url)
>>> z = ZipFile(io.BytesIO(r.content))
>>> file = z.read('SMSSpamCollection')
# Format Data
>>> text_data = file.decode()
>>> text_data = text_data.encode('ascii',errors='ignore')
>>> text_data = text_data.decode().split('\n')
>>> text_data = [x.split('\t') for x in text_data if len(x)>=1]
>>> [text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]
>>> print(len(text_data_train))
5574
>>> print(set(text_data_target))
{'spam', 'ham'}
>>> print(text_data_train[1])
Ok lar... Joking wif u oni...

>>> text_data_train[0:10]
['Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...',
'Ok lar... Joking wif u oni...',
"Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&C's apply 08452810075over18's",
'U dun say so early hor... U c already then say...',
"Nah I don't think he goes to usf, he lives around here though",
"FreeMsg Hey there darling it's been 3 week's now and no word back! I'd like some fun you up for it still? Tb ok! XxX std chgs to send, 1.50 to rcv",
'Even my brother is not like to speak with me. They treat me like aids patent.',
"As per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)' has been set as your callertune for all Callers. Press *9 to copy your friends Callertune",
'WINNER!! As a valued network customer you have been selected to receivea 900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12 hours only.',
'Had your mobile 11 months or more? U R entitled to Update to the latest colour mobiles with camera for Free! Call The Mobile Update Co FREE on 08002986030']








电影评论数据库 [http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz] (Stanford)

这是个二元情感的数据分类库，包含比之前更多的数据。 这里，我们提供25,000 高度极化的电影评论作为训练集，25,000数据评论作为测试集。还有一些并没有标签的数据也会作为使用。原文本和已经处理过得数据形式也提供了，你可以查看README文件更多细节。

如果你想要理解更多，请点击  stanford [http://ai.stanford.edu/~amaas/data/sentiment/index.html]

>>> import requests
>>> import io
>>> import tarfile

>>> movie_data_url = 'http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz'
>>> r = requests.get(movie_data_url)
# Stream data into temp object
>>> stream_data = io.BytesIO(r.content)
>>> tmp = io.BytesIO()
>>> while True:
...    s = stream_data.read(16384)
...    if not s:
...          break
...    tmp.write(s)
>>> stream_data.close()
>>> tmp.seek(0)
# Extract tar file
>>> tar_file = tarfile.open(fileobj=tmp, mode="r:gz")
>>> pos = tar_file.extractfile('rt-polaritydata/rt-polarity.pos')
>>> neg = tar_file.extractfile('rt-polaritydata/rt-polarity.neg')
# Save pos/neg reviews
>>> pos_data = []
>>> for line in pos:
...     pos_data.append(line.decode('ISO-8859-1').encode('ascii',errors='ignore').decode())
>>> neg_data = []
>>> for line in neg:
...     neg_data.append(line.decode('ISO-8859-1').encode('ascii',errors='ignore').decode())
>>> tar_file.close()

# 数据过大，网速不给力，无法给出结果
>>> print(len(pos_data))
>>> print(len(neg_data))
>>> print(neg_data[0])








莎士比亚全集 (古登堡计划)

Project Gutenberg(古登堡计划)是为了出版电子版本的免费书籍而发起的。这个计划把莎士比亚所有作品都编撰在一起。为了训练一个TensorFlow的模型来闯将文本，我们把这个模型放在威廉莎士比亚全集中训练。古登堡计划有很多志愿者为了实现无版权书籍的免费使用，花费了很多精力。在这里，我们可以通过Python的脚本来获取文本文件。

如果你想了解更多莎士比亚全集，请点击 这里 [http://www.gutenberg.org/ebooks/100] 。

# 莎士比亚全集数据
>>> import requests

>>> shakespeare_url = 'http://www.gutenberg.org/cache/epub/100/pg100.txt'
# 获取莎士比亚文本
>>> response = requests.get(shakespeare_url)
>>> shakespeare_file = response.content
# 将二进制转化为字符串
>>> shakespeare_text = shakespeare_file.decode('utf-8')
# 截取几个描述性的段落
>>> shakespeare_text = shakespeare_text[7675:]
>>> print(len(shakespeare_text))
5582212








英语-德语 文本翻译数据库 (Manythings/Tatoeba)

Tatoeba Project [http://www.manythings.org/corpus/about.html#info] 也是由志愿者发起的，旨在
让很多不同的语言之间双语翻译可以实现。Manythings.org 组织编撰这些数据,使得句对句翻译可以下载。在这里
我们用到是英语对德语翻译，但是你可以自己想选哪一个就选哪一个。

双语句对 [http://www.manythings.org/bilingual/]

# English-German 句对句翻译数据
>>> import requests
>>> import io
>>> from zipfile import ZipFile
>>> sentence_url = 'http://www.manythings.org/anki/deu-eng.zip'
>>> r = requests.get(sentence_url)
>>> z = ZipFile(io.BytesIO(r.content))
>>> file = z.read('deu.txt')
# 格式化数据
>>> eng_ger_data = file.decode()
>>> eng_ger_data = eng_ger_data.encode('ascii',errors='ignore')
>>> eng_ger_data = eng_ger_data.decode().split('\n')
>>> eng_ger_data = [x.split('\t') for x in eng_ger_data if len(x)>=1]
>>> [english_sentence, german_sentence] = [list(x) for x in zip(*eng_ger_data)]
>>> print(len(english_sentence))
147788
>>> print(len(german_sentence))
147788
>>> print(eng_ger_data[10])
['I won!', 'Ich hab gewonnen!']








CIFAR-10 数据库

加拿大高级研究所(Canadian Institute For Advanced Research, CIFAR)发布了一个图像集，包含了8千万已标记的图片(每个图片尺寸都是32x32像素). 总共有十大类不同图片，分别是飞机，汽车，鸟类，车，鹿，狗，青蛙，马，船只，卡车。CIFAR-10的一个含有60,000图片的子数据集。训练集有50,000,测试集有10,000。你可以手动下载该数据库 CIFAR-10 data [https://www.cs.toronto.edu/~kriz/cifar.html] ，可以通过下面的代码来获取该数据库。


  
      	飞机
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  

  
      	汽车
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  

  
      	小鸟
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  

  
      	猫
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  

  
      	鹿
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  

  
      	狗
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  

  
      	青蛙
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  

  
      	马
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  

  
      	船
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  

  
      	卡车
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
  


# 运行下面的命令需要网络，下载可能要花上不上时间
>>> (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
Downloading data from http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz





如果自己手动下载文件，并将它解压放到Cifar文件中，这时候可以通过运行下面的代码完成展示：

>>> def load_cfar10_batch(cifar10_dataset_folder_path, batch_id):
...     with open(cifar10_dataset_folder_path + '/data_batch_'+str(batch_id), mode='rb') as file:
...           import pickle
...           batch = pickle.load(file, encoding='latin1')
...
...     features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0,2,3,1)
...     labels = batch['labels']
....    return features,labels
>>> cifar10_path = 'Cifar'
>>> import numpy as np
>>> x_train, y_train = load_cfar10_batch(cifar10_path,1)
>>> for i in range(2,6):
        features, labels = load_cfar10_batch(cifar10_path,i)
        x_train, y_train = np.concatenate([x_train,features]), np.concatenate([y_train,labels])
>>> x_train.shape
(50000, 32, 32, 3)
>>> y_train.shape
(50000,)
# 汽车
>>> y_train[4]
1
>>> from PIL import Image
>>> img = Image.fromarray(x_train[4,:,:,:])
$ %matplotlib inline
>>> plt.imshow(img)





>>> with open(cifar10_path+'/test_batch', mode='rb') as file:
...       import pickle
...       batch = pickle.load(file, encoding='latin1')
...       x_test = batch['data'].reshape((len(batch['data']),3,32,32)).transpose(0,2,3,1)
...       y_test = batch['labels']
>>> import matplotlib.pyplot as plt
>>> fig, axes = plt.subplots(nrows=12,ncols=20, sharex=True, sharey=True,figsize=(20,12))
>>> imgs = x_train[:240]

>>> for image,row in zip([imgs[:20],imgs[20:40],imgs[40:60],imgs[60:80],imgs[80:100],imgs[100:120],imgs[120:140],imgs[140:160],imgs[160:180],imgs[180:200],imgs[200:220],imgs[220:240]],axes):
...     for img, ax in zip(image,row):
...         ax.imshow(img)
...         ax.get_xaxis().set_visible(False)
...         ax.get_yaxis().set_visible(False)
>>> fig.tight_layout(pad=0.1)
>>> plt.show()
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Official Resources



	TensorFlow Python API [https://www.tensorflow.org/api_docs/python/]


	TensorFlow on Github [https://github.com/tensorflow/tensorflow]


	TensorFlow Tutorials [https://www.tensorflow.org/tutorials/]


	Udacity Deep Learning Class [https://www.udacity.com/course/deep-learning--ud730]


	TensorFlow Playground [http://playground.tensorflow.org/]










Github Tutorials and Examples



	Tutorials by pkmital [https://github.com/pkmital/tensorflow_tutorials]


	Tutorials by nlintz [https://github.com/nlintz/TensorFlow-Tutorials]


	Examples by americdamien [https://github.com/aymericdamien/TensorFlow-Examples]


	TensorFlow Workshop by amygdala [https://github.com/amygdala/tensorflow-workshop]










Deep Learning Resources



	Efficient Back Prop by Yann LeCun, et. al. [http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf]


	Online Deep Learning Book, MIT Press [http://www.deeplearningbook.org/]


	An Overview of Gradient Descent Algorithms by Sebastian Ruder [http://sebastianruder.com/optimizing-gradient-descent/]


	Stochastic Optimization by John Duchi, et. al. [http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf]


	ADADELTA Method by Matthew Zeiler [http://arxiv.org/abs/1212.5701]


	A Friendly Introduction to Cross-Entropy Loss by Rob DiPietro [http://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/]










Additional Resources



	A Curated List of Dedicated TensorFlow Resources [https://github.com/jtoy/awesome-tensorflow/]










Arxiv Papers



	TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems [http://arxiv.org/abs/1603.04467]


	TensorFlow: A system for large-scale machine learning [http://arxiv.org/abs/1605.08695]


	Distributed TensorFlow with MPI [https://arxiv.org/abs/1603.02339]


	Comparative Study of Deep Learning Software Frameworks [https://arxiv.org/abs/1511.06435]


	Wide & Deep Learning for Recommender Systems [https://arxiv.org/abs/1606.07792]
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注解

After we have established the basic objects and methods in TensorFlow, we now want to
establish the components that make up TensorFlow algorithms.  We start by introducing
computational graphs, and then move to loss functions and back propagation.  We end with
creating a simple classifier and then show an example of evaluating regression and
classification algorithms.



下载本章 Jupyter Notebook [https://github.com/qmlcode/qml/blob/master/qml/wrappers.py]


计算图




We show how to create an operation on a computational graph and how to visualize it using Tensorboard.

下载本章 Jupyter Notebook






分层嵌套操作




We show how to create multiple operations on a computational graph and how to visualize them using
Tensorboard.

下载本章 Jupyter Notebook






多层操作




Here we extend the usage of the computational graph to create multiple layers and show how they appear
in Tensorboard.

下载本章 Jupyter Notebook






载入损失函数




In order to train a model, we must be able to evaluate how well it is doing. This is given by loss functions.
We plot various loss functions and talk about the benefits and limitations of some.

下载本章 Jupyter Notebook






载入反向传播




Here we show how to use loss functions to iterate through data and back propagate errors for regression
and classification.


下载本章 Jupyter Notebook









随机和批量训练




TensorFlow makes it easy to use both batch and stochastic training. We show how to implement both and talk
about the benefits and limitations of each.

下载本章 Jupyter Notebook






结合训练




We now combine everything together that we have learned and create a simple classifier.

下载本章 Jupyter Notebook






模型评估




Any model is only as good as it’s evaluation.  Here we show two examples of (1) evaluating a regression
algorithm and (2) a classification algorithm.

下载本章 Jupyter Notebook




本章学习模块


tensorflow.zeros

Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

>>> tf.zeros([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	The DType of an element in the resulting Tensor.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to zero.










tensorflow.ones

Creates a tensor with all elements set to one (1).

See also tf.ones_like.

This operation returns a tensor of type dtype with shape shape and
all elements set to one.

>>> tf.ones([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	Optional DType of an element in the resulting Tensor. Default is
tf.float32.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to one (1).
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注解

Here we show how to implement various linear regression techniques in TensorFlow.
The first two sections show how to do standard matrix linear regression solving in
TensorFlow.  The remaining six sections depict how to implement various types of
regression using computational graphs in TensorFlow.




矩阵转置




How to solve a 2D regression with a matrix inverse in TensorFlow.
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矩阵分解法




Solving a 2D linear regression with Cholesky decomposition.
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TensorFLow的线性回归




Linear regression iterating through a computational graph with L2 Loss.
Here we extend the usage of the computational graph to create multiple layers and show how they appear
in Tensorboard.
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线性回归的损失函数




L2 vs L1 loss in linear regression.  We talk about the benefits and limitations of
both.
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Deming回归(全回归)




Deming (total) regression implemented in TensorFlow by changing the loss function.
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套索(Lasso)回归和岭(Ridge)回归




Lasso and Ridge regression are ways of regularizing the coefficients. We implement
both of these in TensorFlow via changing the loss functions.
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弹性网(Elastic Net)回归




Elastic net is a regularization technique that combines the L2 and L1 loss for coefficients.
We show how to implement this in TensorFlow.
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逻辑(Logistic)回归




We implement logistic regression by the use of an activation function in our computational graph.
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本章学习模块


tensorflow.zeros

Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

>>> tf.zeros([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	The DType of an element in the resulting Tensor.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to zero.










tensorflow.ones

Creates a tensor with all elements set to one (1).

See also tf.ones_like.

This operation returns a tensor of type dtype with shape shape and
all elements set to one.

>>> tf.ones([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	Optional DType of an element in the resulting Tensor. Default is
tf.float32.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to one (1).
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注解

This chapter shows how to implement various SVM methods with TensorFlow.  We first
create a linear SVM and also show how it can be used for regression.  We then introduce
kernels (RBF Gaussian kernel) and show how to use it to split up non-linear data. We
finish with a multi-dimensional implementation of non-linear SVMs to work with multiple
classes.




引言




We introduce the concept of SVMs and how we will go about implementing them in the TensorFlow framework.






线性支持向量机




We create a linear SVM to separate I. setosa based on sepal length and pedal width in the Iris
data set.
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回归线性回归




The heart of SVMs is separating classes with a line.  We change tweek the algorithm slightly to perform SVM regression.
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TensorFlow中的核




In order to extend SVMs into non-linear data, we explain and show how to implement different kernels
in TensorFlow.
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非线性支持向量机




We use the Gaussian kernel (RBF) to separate non-linear classes.
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多类支持向量机




SVMs are inherently binary predictors.  We show how to extend them in a one-vs-all strategy in
TensorFlow.
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本章学习模块


tensorflow.zeros

Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

>>> tf.zeros([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	The DType of an element in the resulting Tensor.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to zero.










tensorflow.ones

Creates a tensor with all elements set to one (1).

See also tf.ones_like.

This operation returns a tensor of type dtype with shape shape and
all elements set to one.

>>> tf.ones([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	Optional DType of an element in the resulting Tensor. Default is
tf.float32.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to one (1).
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注解

Nearest Neighbor methods are a very popular ML algorithm.  We show how to implement k-Nearest
Neighbors, weighted k-Nearest Neighbors, and k-Nearest Neighbors with mixed distance functions.
In this chapter we also show how to use the Levenshtein distance (edit distance) in TensorFlow,
and use it to calculate the distance between strings. We end this chapter with showing how to
use k-Nearest Neighbors for categorical prediction with the MNIST handwritten digit recognition.




引言




We introduce the concepts and methods needed for performing k-Nearest Neighbors in TensorFlow.






最近邻法的使用




We create a nearest neighbor algorithm that tries to predict housing worth (regression).
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文本距离函数




In order to use a distance function on text, we show how to use edit distances in TensorFlow.
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计算混合距离函数




Here we implement scaling of the distance function by the standard deviation of the input
feature for k-Nearest Neighbors.
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地址匹配




We use a mixed distance function to match addresses. We use numerical distance for zip codes,
and string edit distance for street names. The street names are allowed to have typos.
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图像处理的近邻法




The MNIST digit image collection is a great data set for illustration of how to perform
k-Nearest Neighbors for an image classification task.
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本章学习模块


tensorflow.zeros

Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

>>> tf.zeros([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	The DType of an element in the resulting Tensor.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to zero.










tensorflow.ones

Creates a tensor with all elements set to one (1).

See also tf.ones_like.

This operation returns a tensor of type dtype with shape shape and
all elements set to one.

>>> tf.ones([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	Optional DType of an element in the resulting Tensor. Default is
tf.float32.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to one (1).
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注解

Neural Networks are very important in machine learning and growing in popularity due to the major
breakthroughs in prior unsolved problems.  We must start with introducing ‘shallow’ neural networks,
which are very powerful and can help us improve our prior ML algorithm results.  We start by introducing
the very basic NN unit, the operational gate.  We gradually add more and more to the neural network
and end with training a model to play tic-tac-toe.




引言




We introduce the concept of neural networks and how TensorFlow is built to easily handle these algorithms.






载入操作门




We implement an operational gate with one operation. Then we show how to extend this to multiple nested
operations.
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门运算和激活函数




Now we have to introduce activation functions on the gates.  We show how different activation functions
operate.
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载入一层神经网络




We have all the pieces to start implementing our first neural network.  We do so here with regression on
the Iris data set.
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载入多层神经网络




This section introduces the convolution layer and the max-pool layer.  We show how to chain these together
in a 1D and 2D example with fully connected layers as well.
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使用多层神经网络




Here we show how to functionalize different layers and variables for a cleaner multi-layer neural network.

下载本章 Jupyter Notebook






线性模型预测改善




We show how we can improve the convergence of our prior logistic regression with a set of hidden layers.
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神经网络学习井字棋




Given a set of tic-tac-toe boards and corresponding optimal moves, we train a neural network classification
model to play.  At the end of the script, we can attempt to play against the trained model.
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本章学习模块


tensorflow.zeros

Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

>>> tf.zeros([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	The DType of an element in the resulting Tensor.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to zero.










tensorflow.ones

Creates a tensor with all elements set to one (1).

See also tf.ones_like.

This operation returns a tensor of type dtype with shape shape and
all elements set to one.

>>> tf.ones([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	Optional DType of an element in the resulting Tensor. Default is
tf.float32.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to one (1).
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引言




We introduce methods for turning text into numerical vectors. We introduce the TensorFlow ‘embedding’ feature
as well.






词袋 (Bag of Words)




Here we use TensorFlow to do a one-hot-encoding of words called bag-of-words.  We use this method and logistic regression to predict if a text message is spam or ham.
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词频-逆文本频率 (TF-IDF)




We implement Text Frequency - Inverse Document Frequency (TFIDF) with a combination of Sci-kit Learn and TensorFlow.
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运用Skip-Gram




Our first implementation of Word2Vec called, “skip-gram” on a movie review database.
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CBOW (Continuous Bag fo Words)




Next, we implement a form of Word2Vec called, “CBOW” (Continuous Bag of Words) on a movie review database.  We also introduce method to saving and loading word embeddings.

This section introduces the convolution layer and the max-pool layer.  We show how to chain these together in a 1D and 2D example with fully connected layers as well.
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Word2Vec应用实例




In this example, we use the prior saved CBOW word embeddings to improve on our TF-IDF logistic regression of movie review sentiment.

Here we show how to functionalize different layers and variables for a cleaner multi-layer neural network.

下载本章 Jupyter Notebook






Doc2Vec情感分析 (Sentiment Analysis)




Here, we introduce a Doc2Vec method (concatenation of doc and word embeddings) to improve out logistic model of
movie review sentiment.
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神经网络学习井字棋




Given a set of tic-tac-toe boards and corresponding optimal moves, we train a neural network classification
model to play.  At the end of the script, we can attempt to play against the trained model.
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本章学习模块


tensorflow.zeros

Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

>>> tf.zeros([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	The DType of an element in the resulting Tensor.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to zero.










tensorflow.ones

Creates a tensor with all elements set to one (1).

See also tf.ones_like.

This operation returns a tensor of type dtype with shape shape and
all elements set to one.

>>> tf.ones([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]], dtype=int32)>






	param shape

	A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.



	param dtype

	Optional DType of an element in the resulting Tensor. Default is
tf.float32.



	param name

	Optional string. A name for the operation.



	returns

	A Tensor with all elements set to one (1).
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引言

We introduce convolutional neural networks (CNN), and how we can use them in TensorFlow.




简单卷积神经网络 (Simple CNNs)

Here, we show how to create a CNN architecture that performs well on the MNIST digit recognition
task.




高级卷积神经网络 (Advanced CNNs)

In this example, we show how to replicate an architecture for the CIFAR-10 image recognition task.




重新训练一个存在架构

We show how to download and setup the CIFAR-10 data for the TensorFlow retraining-fine-tuning tutorial [https://github.com/tensorflow/models/tree/master/inception]




使用Stylenet/Neural-Style

In this recipe, we show a basic implementation of using Stylenet or Neuralstyle.




运用Deep Dream

This script shows a line-by-line explanation of TensorFlow’s deepdream tutorial. Taken from
Deepdream on TensorFlow [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream]
Note that the code here is converted to Python 3.
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引言

We introduce Recurrent Neural Networks and how they are able to feed in a sequence and predict either
a fixed target (categorical/numerical) or another sequence (sequence to sequence).




卷积神经网络模型用于垃圾信息检测

We create an RNN model to improve on our spam/ham SMS text predictions.




LSTM模型用于文本生成

We show how to implement a LSTM (Long Short Term Memory) RNN for Shakespeare language generation.
(Word level vocabulary)




堆叠多层LSTM

We stack multiple LSTM layers to improve on our Shakespeare language generation. (Character level
vocabulary)




创建段对段模型翻译 (Seq2Seq)

We show how to use TensorFlow’s sequence-to-sequence models to train an English-German translation model.




训练Siamese相似度测量

Here, we implement a Siamese RNN to predict the similarity of addresses and use it for record matching.
Using RNNs for record matching is very versatile, as we do not have a fixed set of target categories and
can use the trained model to predict similarities across new addresses.
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单元测试

We show how to implement different types of unit tests on tensors (placeholders and variables).




使用多个执行器 (设备)

How to use a machine with multiple devices.  E.g., a machine with a CPU, and one or more GPUs.




TensorFlow平行化

How to setup and use TensorFlow distributed on multiple machines.




TensorFlow开发贴士

Various tips for developing with TensorFlow




TensorFlow开发实例

We show how to do take the RNN model for predicting ham/spam (from Chapter 9, recipe #2) and put
it in two production level files: training and evaluation.
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计算图可视化(用Tensorboard)

An example of using histograms, scalar summaries, and creating images in Tensorboard.




遗传算法

We create a genetic algorithm to optimize an individual (array of 50 numbers) toward the
ground truth function.




K-means聚类分析

How to use TensorFlow to do k-means clustering.  We use the Iris data set, set k=3, and use
k-means to make predictions.




解决体系常微分方程

Here, we show how to use TensorFlow to solve a system of ODEs.  The system of concern is the
Lotka-Volterra predator-prey system.




随机森林

We illustrate how to use TensorFlow’s gradient boosted regression and classification trees.




TensorFlow中的Keras

Here we show how to use the Keras sequential model building for a fully connected neural
network and a CNN model with callbacks.
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 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 


A


  	
      	abs() (在 tensorflow 模块中), [1]


      	acos() (在 tensorflow 模块中), [1]


      	acosh() (在 tensorflow 模块中), [1]


      	add() (在 tensorflow 模块中), [1]


      	ADD_N (tensorflow.AggregationMethod 属性), [1]


      	add_n() (在 tensorflow 模块中), [1]


      	add_to_collection() (tensorflow.Graph 方法), [1]


      	add_to_collections() (tensorflow.Graph 方法), [1]


      	aggregation (tensorflow.Variable 属性), [1]


      	AggregationMethod (tensorflow 中的类), [1]


      	argmax() (在 tensorflow 模块中), [1]


      	argmin() (在 tensorflow 模块中), [1]


      	argsort() (在 tensorflow 模块中), [1]


      	as_default() (tensorflow.Graph 方法), [1]


      	as_dtype() (在 tensorflow 模块中), [1]


      	as_graph_def() (tensorflow.Graph 方法), [1]


      	as_graph_element() (tensorflow.Graph 方法), [1]


      	as_list() (tensorflow.TensorShape 方法), [1]


      	as_numpy_dtype (tensorflow.DType 属性), [1]


  

  	
      	as_proto() (tensorflow.TensorShape 方法), [1]


      	as_string() (在 tensorflow 模块中), [1]


      	asin() (在 tensorflow 模块中), [1]


      	asinh() (在 tensorflow 模块中), [1]


      	Assert() (在 tensorflow 模块中), [1]


      	assert_equal() (在 tensorflow 模块中), [1]


      	assert_greater() (在 tensorflow 模块中), [1]


      	assert_has_rank() (tensorflow.TensorShape 方法), [1]


      	assert_is_compatible_with() (tensorflow.TensorShape 方法), [1]


      	assert_is_fully_defined() (tensorflow.TensorShape 方法), [1]


      	assert_less() (在 tensorflow 模块中), [1]


      	assert_rank() (在 tensorflow 模块中), [1]


      	assert_same_rank() (tensorflow.TensorShape 方法), [1]


      	assign() (tensorflow.Variable 方法), [1]


      	assign_add() (tensorflow.Variable 方法), [1]
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TensorFlow 机器学习 Cookbook (version : 0.1.0)


	TensorFlow (i.e., TF)::

	在2015年的时候已经成为开源项目, 自从那之后它已经成为Github中starred最多的机器学习库. TensorFlow的受欢迎度主要归功于它能帮助程序员创造计算图(computational graphs), 自动微分 (automatic differentation) 和 可定制性 (customizability). 由于这些特性，TensorFlow是一个强有力的灵活性高的工具,  用于解决很多机器学习的问题.





本教程阐述很多机器学习算法, 以及如何把它们应用到实际情况中, 以及如何诠释所得到的结果.


重要


	第一章: 从TensorFlow开始 (Getting Started), 介绍主要tensorflow的对象与概念. 我们介绍张量, 变量和占位符. 我们也会展示如何在tensorflow中使用矩阵和其他的数学操作. 在本章的末尾，我们会展示如何获取数据资源.


	第二章: TensorFlow方式 (TF Way), 阐述如何用多种方式将第一章中所有的算法成分关联成一个计算图并创造出一个简单的分类器. 在阐述的过程中, 我们会介绍计算图 (computational graphs), 损失函数 (loss functions), 反向传播 (back propagation), 以及训练数据.


	第三章: 线性回归 (Linear Regression), 本章着重强调如何使用tensorflow来探索不同的线性回归技巧, 比如Deming, lasso, ridge, elastic net 和 logistic regression. 我们会在计算图中展示如何应用它们.


	第四章: 支持向量机 (Support Vector Machine), 介绍支持向量机 (SVMs) 然后展示如何用tensorflow去运用线性SVMs, 非线性SVMs和多类SVMs.


	第五章: 最近邻方法 (NNM), 展示如何运用数值度量，文本度量和比例距离函数使用最近邻技巧. 我们使用最近邻技巧来完成地址记录匹配和从MNIST数据库中对手写数字进行分类.


	第六章: 神经网络 (Neural Networks), 介绍了从操作门 (operational gates) 和激活函数 (activation function) 的概念开始, 在tensorflow中如何运用神经网络. 然后我们展示一个很浅神经元然后展示如何建立不同类型的层. 在本章的末尾, 我们会教tensorflow通过神经网络的方法玩井字棋(tic-tac-toe).


	第七章: 自然语言处理 (NLP), 本章展示了运用tensorflow不同文本的处理方法. 我们会展示如何在文本处理中使用Bag of Words (BoW) 模型和TF-IDF (Term Frequency-Inverse Document Frequency) 模型. 我们然后会用CBOW (Continuous Bag of Words) 和Skip-Gram模型来介绍神经元完了文本表达, 然后运用这些技巧到Word2Vec和Doc2Vec上, 用于解决实际结果预测.


	第八章: 卷积神经网络 (CNN), 通过展示如何通过使用卷积神经网络 (convolutional neural networks) CNNs模型将神经网络运用到图像处理上. 我们诠释了如何为MNIST数字识别构建一个简单卷积神经网络模型, 然后在CIFAR-10任务中把它扩展到颜色识别. 我们也会展示如何把之前训练过得图像识别模型扩展到自定义任务当中. 在本章的末尾，我们会在tensorflow中解释 stylenet/neural style和deep-dream 算法.


	第九章: 递归神经网络 (RNN), 会展示如何在tensorflow中运用递归神经元(recurrent neural networks). 我们会展示如何进行垃圾文本预测, 然后将递归神经网络模型扩展到基于莎士比亚文本生成. 我们也会训练段对段模型 (sequence to sequence model), 用于德语英语的翻译. 在本章的末尾, 我们也会展示Siamese递归神经网络用于地址记录匹配的用法.


	第十章: TensorFlow的应用技巧, 本章将会给出将TensorFlow应用到开发环境中, 如何利用多过程设备(比如GPUs), 然后将TensorFlow分布在多个机器上.


	第十一章: TensorFlow的更多功能, 通过阐述如何运行k-means, genetic算法来展示TensorFlow的多面性, 解决系统的常微分方程. 我们也展示Tensorboard的多处使用, 以及如何显示计算图度量.
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TensorFlow模块介绍

Top-level module of TensorFlow. By convention, we refer to this module as
tf instead of tensorflow, following the common practice of importing
TensorFlow via the command import tensorflow as tf.

The primary function of this module is to import all of the public TensorFlow
interfaces into a single place. The interfaces themselves are located in
sub-modules, as described below.

Note that the file __init__.py in the TensorFlow source code tree is actually
only a placeholder to enable test cases to run. The TensorFlow build replaces
this file with a file generated from [api_template.__init__.py](https://www.github.com/tensorflow/tensorflow/blob/master/tensorflow/api_template.__init__.py)


	
class tensorflow.AggregationMethod

	基类：object

A class listing aggregation methods used to combine gradients.

Computing partial derivatives can require aggregating gradient
contributions. This class lists the various methods that can
be used to combine gradients in the graph.

The following aggregation methods are part of the stable API for
aggregating gradients:


	ADD_N: All of the gradient terms are summed as part of one
operation using the “AddN” op (see tf.add_n). This
method has the property that all gradients must be ready and
buffered separately in memory before any aggregation is performed.


	DEFAULT: The system-chosen default aggregation method.




The following aggregation methods are experimental and may not
be supported in future releases:


	EXPERIMENTAL_TREE: Gradient terms are summed in pairs using
using the “AddN” op. This method of summing gradients may reduce
performance, but it can improve memory utilization because the
gradients can be released earlier.





	
ADD_N = 0

	




	
DEFAULT = 0

	




	
EXPERIMENTAL_ACCUMULATE_N = 2

	




	
EXPERIMENTAL_TREE = 1

	








	
tensorflow.Assert(condition, data, summarize=None, name=None)

	Asserts that the given condition is true.

If condition evaluates to false, print the list of tensors in data.
summarize determines how many entries of the tensors to print.

NOTE: In graph mode, to ensure that Assert executes, one usually attaches
a dependency:

```python
# Ensure maximum element of x is smaller or equal to 1
assert_op = tf.Assert(tf.less_equal(tf.reduce_max(x), 1.), [x])
with tf.control_dependencies([assert_op]):


… code using x …




```


	参数

	
	condition – The condition to evaluate.


	data – The tensors to print out when condition is false.


	summarize – Print this many entries of each tensor.


	name – A name for this operation (optional).






	返回

	An Operation that, when executed, raises a
tf.errors.InvalidArgumentError if condition is not true.
@compatibility(eager)
returns None
@end_compatibility



	返回类型

	assert_op



	Raises

	
	@compatibility(eager)


	tf.errors.InvalidArgumentError if condition is not true


	@end_compatibility








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
class tensorflow.CriticalSection(name=None, shared_name=None, critical_section_def=None, import_scope=None)

	基类：object

Critical section.

A CriticalSection object is a resource in the graph which executes subgraphs
in serial order.  A common example of a subgraph one may wish to run
exclusively is the one given by the following function:

```python
v = resource_variable_ops.ResourceVariable(0.0, name=”v”)


	def count():

	value = v.read_value()
with tf.control_dependencies([value]):



	with tf.control_dependencies([v.assign_add(1)]):

	return tf.identity(value)












```

Here, a snapshot of v is captured in value; and then v is updated.
The snapshot value is returned.

If multiple workers or threads all execute count in parallel, there is no
guarantee that access to the variable v is atomic at any point within
any thread’s calculation of count.  In fact, even implementing an atomic
counter that guarantees that the user will see each value 0, 1, …, is
currently impossible.

The solution is to ensure any access to the underlying resource v is
only processed through a critical section:

`python
cs = CriticalSection()
f1 = cs.execute(count)
f2 = cs.execute(count)
output = f1 + f2
session.run(output)
`
The functions f1 and f2 will be executed serially, and updates to v
will be atomic.

NOTES

All resource objects, including the critical section and any captured
variables of functions executed on that critical section, will be
colocated to the same device (host and cpu/gpu).

When using multiple critical sections on the same resources, there is no
guarantee of exclusive access to those resources.  This behavior is disallowed
by default (but see the kwarg exclusive_resource_access).

For example, running the same function in two separate critical sections
will not ensure serial execution:

```python
v = tf.compat.v1.get_variable(“v”, initializer=0.0, use_resource=True)
def accumulate(up):


x = v.read_value()
with tf.control_dependencies([x]):



	with tf.control_dependencies([v.assign_add(up)]):

	return tf.identity(x)












	ex1 = CriticalSection().execute(

	accumulate, 1.0, exclusive_resource_access=False)



	ex2 = CriticalSection().execute(

	accumulate, 1.0, exclusive_resource_access=False)





bad_sum = ex1 + ex2
sess.run(v.initializer)
sess.run(bad_sum)  # May return 0.0
```

Creates a critical section.


	
execute(fn, exclusive_resource_access=True, name=None)

	Execute function fn() inside the critical section.

fn should not accept any arguments.  To add extra arguments to when
calling fn in the critical section, create a lambda:

`python
critical_section.execute(lambda: fn(*my_args, **my_kwargs))
`


	参数

	
	fn – The function to execute.  Must return at least one tensor.


	exclusive_resource_access – Whether the resources required by
fn should be exclusive to this CriticalSection.  Default: True.
You may want to set this to False if you will be accessing a
resource in read-only mode in two different CriticalSections.


	name – The name to use when creating the execute operation.






	返回

	The tensors returned from fn().



	Raises

	
	ValueError – If fn attempts to lock this CriticalSection in any nested
or lazy way that may cause a deadlock.


	ValueError – If exclusive_resource_access == True and
another CriticalSection has an execution requesting the same
resources as fn`.  Note, even if exclusive_resource_access is
True, if another execution in another CriticalSection was created
without exclusive_resource_access=True, a ValueError will be raised.













	
name

	








	
class tensorflow.DType(self: tensorflow.python._dtypes.DType, arg0: object) → None

	基类：tensorflow.python._dtypes.DType

Represents the type of the elements in a Tensor.

The following DType objects are defined:


	tf.float16: 16-bit half-precision floating-point.


	tf.float32: 32-bit single-precision floating-point.


	tf.float64: 64-bit double-precision floating-point.


	tf.bfloat16: 16-bit truncated floating-point.


	tf.complex64: 64-bit single-precision complex.


	tf.complex128: 128-bit double-precision complex.


	tf.int8: 8-bit signed integer.


	tf.uint8: 8-bit unsigned integer.


	tf.uint16: 16-bit unsigned integer.


	tf.uint32: 32-bit unsigned integer.


	tf.uint64: 64-bit unsigned integer.


	tf.int16: 16-bit signed integer.


	tf.int32: 32-bit signed integer.


	tf.int64: 64-bit signed integer.


	tf.bool: Boolean.


	tf.string: String.


	tf.qint8: Quantized 8-bit signed integer.


	tf.quint8: Quantized 8-bit unsigned integer.


	tf.qint16: Quantized 16-bit signed integer.


	tf.quint16: Quantized 16-bit unsigned integer.


	tf.qint32: Quantized 32-bit signed integer.


	tf.resource: Handle to a mutable resource.


	tf.variant: Values of arbitrary types.




The tf.as_dtype() function converts numpy types and string type
names to a DType object.


	
as_numpy_dtype

	Returns a Python type object based on this DType.






	
base_dtype

	Returns a non-reference DType based on this DType.






	
is_compatible_with(other)

	Returns True if the other DType will be converted to this DType.

The conversion rules are as follows:

`python
DType(T)       .is_compatible_with(DType(T))        == True
`


	参数

	other – A DType (or object that may be converted to a DType).



	返回

	True if a Tensor of the other DType will be implicitly converted to
this DType.










	
limits

	Return intensity limits, i.e.

(min, max) tuple, of the dtype.
:param clip_negative: bool, optional If True, clip the negative range (i.e.


return 0 for min intensity) even if the image dtype allows negative
values. Returns





	参数

	max (min,) – tuple Lower and upper intensity limits.










	
max

	Returns the maximum representable value in this data type.


	Raises

	TypeError – if this is a non-numeric, unordered, or quantized type.










	
min

	Returns the minimum representable value in this data type.


	Raises

	TypeError – if this is a non-numeric, unordered, or quantized type.










	
real_dtype

	Returns the DType corresponding to this DType’s real part.










	
tensorflow.DeviceSpec

	tensorflow.python.framework.device_spec.DeviceSpecV2 的别名






	
class tensorflow.GradientTape(persistent=False, watch_accessed_variables=True)

	基类：object

Record operations for automatic differentiation.

Operations are recorded if they are executed within this context manager and
at least one of their inputs is being “watched”.

Trainable variables (created by tf.Variable or tf.compat.v1.get_variable,
where trainable=True is default in both cases) are automatically watched.
Tensors can be manually watched by invoking the watch method on this context
manager.

For example, consider the function y = x * x. The gradient at x = 3.0 can
be computed as:

```python
x = tf.constant(3.0)
with tf.GradientTape() as g:


g.watch(x)
y = x * x




dy_dx = g.gradient(y, x) # Will compute to 6.0
```

GradientTapes can be nested to compute higher-order derivatives. For example,

```python
x = tf.constant(3.0)
with tf.GradientTape() as g:


g.watch(x)
with tf.GradientTape() as gg:


gg.watch(x)
y = x * x




dy_dx = gg.gradient(y, x)     # Will compute to 6.0




d2y_dx2 = g.gradient(dy_dx, x)  # Will compute to 2.0
```

By default, the resources held by a GradientTape are released as soon as
GradientTape.gradient() method is called. To compute multiple gradients over
the same computation, create a persistent gradient tape. This allows multiple
calls to the gradient() method as resources are released when the tape object
is garbage collected. For example:

```python
x = tf.constant(3.0)
with tf.GradientTape(persistent=True) as g:


g.watch(x)
y = x * x
z = y * y




dz_dx = g.gradient(z, x)  # 108.0 (4*x^3 at x = 3)
dy_dx = g.gradient(y, x)  # 6.0
del g  # Drop the reference to the tape
```

By default GradientTape will automatically watch any trainable variables that
are accessed inside the context. If you want fine grained control over which
variables are watched you can disable automatic tracking by passing
watch_accessed_variables=False to the tape constructor:

```python
with tf.GradientTape(watch_accessed_variables=False) as tape:


tape.watch(variable_a)
y = variable_a ** 2  # Gradients will be available for variable_a.
z = variable_b ** 3  # No gradients will be available since variable_b is


# not being watched.







```

Note that when using models you should ensure that your variables exist when
using watch_accessed_variables=False. Otherwise it’s quite easy to make your
first iteration not have any gradients:

```python
a = tf.keras.layers.Dense(32)
b = tf.keras.layers.Dense(32)


	with tf.GradientTape(watch_accessed_variables=False) as tape:

	
	tape.watch(a.variables)  # Since a.build has not been called at this point

	# a.variables will return an empty list and the
# tape will not be watching anything.





result = b(a(inputs))
tape.gradient(result, a.variables)  # The result of this computation will be


# a list of `None`s since a’s variables
# are not being watched.








```

Note that only tensors with real or complex dtypes are differentiable.

Creates a new GradientTape.


	参数

	
	persistent – Boolean controlling whether a persistent gradient tape
is created. False by default, which means at most one call can
be made to the gradient() method on this object.


	watch_accessed_variables – Boolean controlling whether the tape will
automatically watch any (trainable) variables accessed while the tape
is active. Defaults to True meaning gradients can be requested from any
result computed in the tape derived from reading a trainable Variable.
If False users must explicitly watch any `Variable`s they want to
request gradients from.









	
batch_jacobian(target, source, unconnected_gradients=<UnconnectedGradients.NONE: 'none'>, parallel_iterations=None, experimental_use_pfor=True)

	Computes and stacks per-example jacobians.

See [wikipedia article](http://en.wikipedia.org/wiki/jacobian_matrix_and_determinant) for the
definition of a Jacobian. This function is essentially an efficient
implementation of the following:

tf.stack([self.jacobian(y[i], x[i]) for i in range(x.shape[0])]).

Note that compared to GradientTape.jacobian which computes gradient of
each output value w.r.t each input value, this function is useful when
target[i,…] is independent of source[j,…] for j != i. This
assumption allows more efficient computation as compared to
GradientTape.jacobian. The output, as well as intermediate activations,
are lower dimensional and avoid a bunch of redundant zeros which would
result in the jacobian computation given the independence assumption.

Example usage:

```python
with tf.GradientTape() as g:


x = tf.constant([[1., 2.], [3., 4.]], dtype=tf.float32)
g.watch(x)
y = x * x




batch_jacobian = g.batch_jacobian(y, x)
# batch_jacobian is [[[2,  0], [0,  4]], [[6,  0], [0,  8]]]
```


	参数

	
	target – A tensor with rank 2 or higher and with shape [b, y1, …, y_n].
target[i,…] should only depend on source[i,…].


	source – A tensor with rank 2 or higher and with shape [b, x1, …, x_m].


	unconnected_gradients – a value which can either hold ‘none’ or ‘zero’ and
alters the value which will be returned if the target and sources are
unconnected. The possible values and effects are detailed in
‘UnconnectedGradients’ and it defaults to ‘none’.


	parallel_iterations – A knob to control how many iterations are dispatched
in parallel. This knob can be used to control the total memory usage.


	experimental_use_pfor – If true, uses pfor for computing the Jacobian. Else
uses a tf.while_loop.






	返回

	A tensor t with shape [b, y_1, …, y_n, x1, …, x_m] where t[i, …]
is the jacobian of target[i, …] w.r.t. source[i, …], i.e. stacked
per-example jacobians.



	Raises

	
	RuntimeError – If called on a non-persistent tape with eager execution
enabled and without enabling experimental_use_pfor.


	ValueError – If vectorization of jacobian computation fails or if first
dimension of target and source do not match.













	
gradient(target, sources, output_gradients=None, unconnected_gradients=<UnconnectedGradients.NONE: 'none'>)

	Computes the gradient using operations recorded in context of this tape.


	参数

	
	target – a list or nested structure of Tensors or Variables to be
differentiated.


	sources – a list or nested structure of Tensors or Variables. target
will be differentiated against elements in sources.


	output_gradients – a list of gradients, one for each element of
target. Defaults to None.


	unconnected_gradients – a value which can either hold ‘none’ or ‘zero’ and
alters the value which will be returned if the target and sources are
unconnected. The possible values and effects are detailed in
‘UnconnectedGradients’ and it defaults to ‘none’.






	返回

	a list or nested structure of Tensors (or IndexedSlices, or None),
one for each element in sources. Returned structure is the same as
the structure of sources.



	Raises

	
	RuntimeError – if called inside the context of the tape, or if called more
than once on a non-persistent tape.


	ValueError – if the target is a variable or if unconnected gradients is
called with an unknown value.













	
jacobian(target, sources, unconnected_gradients=<UnconnectedGradients.NONE: 'none'>, parallel_iterations=None, experimental_use_pfor=True)

	Computes the jacobian using operations recorded in context of this tape.

See [wikipedia article](http://en.wikipedia.org/wiki/jacobian_matrix_and_determinant) for the
definition of a Jacobian.

Example usage:

```python
with tf.GradientTape() as g:


x  = tf.constant([1.0, 2.0])
g.watch(x)
y = x * x




jacobian = g.jacobian(y, x)
# jacobian value is [[2., 0.], [0., 4.]]
```


	参数

	
	target – Tensor to be differentiated.


	sources – a list or nested structure of Tensors or Variables. target
will be differentiated against elements in sources.


	unconnected_gradients – a value which can either hold ‘none’ or ‘zero’ and
alters the value which will be returned if the target and sources are
unconnected. The possible values and effects are detailed in
‘UnconnectedGradients’ and it defaults to ‘none’.


	parallel_iterations – A knob to control how many iterations are dispatched
in parallel. This knob can be used to control the total memory usage.


	experimental_use_pfor – If true, vectorizes the jacobian computation. Else
falls back to a sequential while_loop. Vectorization can sometimes fail
or lead to excessive memory usage. This option can be used to disable
vectorization in such cases.






	返回

	A list or nested structure of Tensors (or None), one for each element in
sources. Returned structure is the same as the structure of sources.
Note if any gradient is sparse (IndexedSlices), jacobian function
currently makes it dense and returns a Tensor instead. This may change in
the future.



	Raises

	
	RuntimeError – If called on a non-persistent tape with eager execution
enabled and without enabling experimental_use_pfor.


	ValueError – If vectorization of jacobian computation fails.













	
reset()

	Clears all information stored in this tape.

Equivalent to exiting and reentering the tape context manager with a new
tape. For example, the two following code blocks are equivalent:

```
with tf.GradientTape() as t:


loss = loss_fn()





	with tf.GradientTape() as t:

	loss += other_loss_fn()





t.gradient(loss, …)  # Only differentiates other_loss_fn, not loss_fn

# The following is equivalent to the above
with tf.GradientTape() as t:


loss = loss_fn()
t.reset()
loss += other_loss_fn()




t.gradient(loss, …)  # Only differentiates other_loss_fn, not loss_fn
```

This is useful if you don’t want to exit the context manager for the tape,
or can’t because the desired reset point is inside a control flow construct:

```
with tf.GradientTape() as t:


loss = …
if loss > k:


t.reset()







```






	
stop_recording()

	Temporarily stops recording operations on this tape.

Operations executed while this context manager is active will not be
recorded on the tape. This is useful for reducing the memory used by tracing
all computations.

For example:


	```

	
	with tf.GradientTape(persistent=True) as t:

	loss = compute_loss(model)
with t.stop_recording():


# The gradient computation below is not traced, saving memory.
grads = t.gradient(loss, model.variables)












```


	Yields

	None



	Raises

	RuntimeError – if the tape is not currently recording.










	
watch(tensor)

	Ensures that tensor is being traced by this tape.


	参数

	tensor – a Tensor or list of Tensors.



	Raises

	ValueError – if it encounters something that is not a tensor.










	
watched_variables()

	Returns variables watched by this tape in order of construction.










	
class tensorflow.Graph

	基类：object

A TensorFlow computation, represented as a dataflow graph.

Graphs are used by tf.function`s to represent the function’s computations.
Each graph contains a set of `tf.Operation objects, which represent units of
computation; and tf.Tensor objects, which represent the units of data that
flow between operations.

### Using graphs directly (deprecated)

A tf.Graph can be constructed and used directly without a tf.function, as
was required in TensorFlow 1, but this is deprecated and it is recommended to
use a tf.function instead. If a graph is directly used, other deprecated
TensorFlow 1 classes are also required to execute the graph, such as a
tf.compat.v1.Session.

A default graph can be registered with the tf.Graph.as_default context
manager. Then, operations will be added to the graph instead of being executed
eagerly. For example:

```python
g = tf.Graph()
with g.as_default():


# Define operations and tensors in g.
c = tf.constant(30.0)
assert c.graph is g




```

tf.compat.v1.get_default_graph() can be used to obtain the default graph.

Important note: This class is not thread-safe for graph construction. All
operations should be created from a single thread, or external
synchronization must be provided. Unless otherwise specified, all methods
are not thread-safe.

A Graph instance supports an arbitrary number of “collections”
that are identified by name. For convenience when building a large
graph, collections can store groups of related objects: for
example, the tf.Variable uses a collection (named
tf.GraphKeys.GLOBAL_VARIABLES) for
all variables that are created during the construction of a graph. The caller
may define additional collections by specifying a new name.

Creates a new, empty Graph.


	
add_to_collection(name, value)

	Stores value in the collection with the given name.

Note that collections are not sets, so it is possible to add a value to
a collection several times.


	参数

	
	name – The key for the collection. The GraphKeys class contains many
standard names for collections.


	value – The value to add to the collection.













	
add_to_collections(names, value)

	Stores value in the collections given by names.

Note that collections are not sets, so it is possible to add a value to
a collection several times. This function makes sure that duplicates in
names are ignored, but it will not check for pre-existing membership of
value in any of the collections in names.

names can be any iterable, but if names is a string, it is treated as a
single collection name.


	参数

	
	names – The keys for the collections to add to. The GraphKeys class
contains many standard names for collections.


	value – The value to add to the collections.













	
as_default()

	Returns a context manager that makes this Graph the default graph.

This method should be used if you want to create multiple graphs
in the same process. For convenience, a global default graph is
provided, and all ops will be added to this graph if you do not
create a new graph explicitly.

Use this method with the with keyword to specify that ops created within
the scope of a block should be added to this graph. In this case, once
the scope of the with is exited, the previous default graph is set again
as default. There is a stack, so it’s ok to have multiple nested levels
of as_default calls.

The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that
thread, you must explicitly add a with g.as_default(): in that
thread’s function.

The following code examples are equivalent:

```python
# 1. Using Graph.as_default():
g = tf.Graph()
with g.as_default():


c = tf.constant(5.0)
assert c.graph is g




# 2. Constructing and making default:
with tf.Graph().as_default() as g:


c = tf.constant(5.0)
assert c.graph is g




```

If eager execution is enabled ops created under this context manager will be
added to the graph instead of executed eagerly.


	返回

	A context manager for using this graph as the default graph.










	
as_graph_def(from_version=None, add_shapes=False)

	Returns a serialized GraphDef representation of this graph.

The serialized GraphDef can be imported into another Graph
(using tf.import_graph_def) or used with the
[C++ Session API](../../api_docs/cc/index.md).

This method is thread-safe.


	参数

	
	from_version – Optional.  If this is set, returns a GraphDef containing
only the nodes that were added to this graph since its version
property had the given value.


	add_shapes – If true, adds an “_output_shapes” list attr to each node with
the inferred shapes of each of its outputs.






	返回

	A
[GraphDef](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
protocol buffer.



	Raises

	ValueError – If the graph_def would be too large.










	
as_graph_element(obj, allow_tensor=True, allow_operation=True)

	Returns the object referred to by obj, as an Operation or Tensor.

This function validates that obj represents an element of this
graph, and gives an informative error message if it is not.

This function is the canonical way to get/validate an object of
one of the allowed types from an external argument reference in the
Session API.

This method may be called concurrently from multiple threads.


	参数

	
	obj – A Tensor, an Operation, or the name of a tensor or operation. Can
also be any object with an _as_graph_element() method that returns a
value of one of these types. Note: _as_graph_element will be called
inside the graph’s lock and so may not modify the graph.


	allow_tensor – If true, obj may refer to a Tensor.


	allow_operation – If true, obj may refer to an Operation.






	返回

	The Tensor or Operation in the Graph corresponding to obj.



	Raises

	
	TypeError – If obj is not a type we support attempting to convert
to types.


	ValueError – If obj is of an appropriate type but invalid. For
example, an invalid string.


	KeyError – If obj is not an object in the graph.













	
building_function

	Returns True iff this graph represents a function.






	
clear_collection(name)

	Clears all values in a collection.


	参数

	name – The key for the collection. The GraphKeys class contains many
standard names for collections.










	
collections

	Returns the names of the collections known to this graph.






	
colocate_with(op, ignore_existing=False)

	Returns a context manager that specifies an op to colocate with.

Note: this function is not for public use, only for internal libraries.

For example:

```python
a = tf.Variable([1.0])
with g.colocate_with(a):


b = tf.constant(1.0)
c = tf.add(a, b)




```

b and c will always be colocated with a, no matter where a
is eventually placed.

NOTE Using a colocation scope resets any existing device constraints.

If op is None then ignore_existing must be True and the new
scope resets all colocation and device constraints.


	参数

	
	op – The op to colocate all created ops with, or None.


	ignore_existing – If true, only applies colocation of this op within the
context, rather than applying all colocation properties on the stack.
If op is None, this value must be True.






	Raises

	ValueError – if op is None but ignore_existing is False.



	Yields

	A context manager that specifies the op with which to colocate
newly created ops.










	
container(container_name)

	Returns a context manager that specifies the resource container to use.

Stateful operations, such as variables and queues, can maintain their
states on devices so that they can be shared by multiple processes.
A resource container is a string name under which these stateful
operations are tracked. These resources can be released or cleared
with tf.Session.reset().

For example:

```python
with g.container(‘experiment0’):


# All stateful Operations constructed in this context will be placed
# in resource container “experiment0”.
v1 = tf.Variable([1.0])
v2 = tf.Variable([2.0])
with g.container(“experiment1”):


# All stateful Operations constructed in this context will be
# placed in resource container “experiment1”.
v3 = tf.Variable([3.0])
q1 = tf.queue.FIFOQueue(10, tf.float32)




# All stateful Operations constructed in this context will be
# be created in the “experiment0”.
v4 = tf.Variable([4.0])
q1 = tf.queue.FIFOQueue(20, tf.float32)
with g.container(“”):


# All stateful Operations constructed in this context will be
# be placed in the default resource container.
v5 = tf.Variable([5.0])
q3 = tf.queue.FIFOQueue(30, tf.float32)







# Resets container “experiment0”, after which the state of v1, v2, v4, q1
# will become undefined (such as uninitialized).
tf.Session.reset(target, [“experiment0”])
```


	参数

	container_name – container name string.



	返回

	
	A context manager for defining resource containers for stateful ops,

	yields the container name.
















	
control_dependencies(control_inputs)

	Returns a context manager that specifies control dependencies.

Use with the with keyword to specify that all operations constructed
within the context should have control dependencies on
control_inputs. For example:

```python
with g.control_dependencies([a, b, c]):


# d and e will only run after a, b, and c have executed.
d = …
e = …




```

Multiple calls to control_dependencies() can be nested, and in
that case a new Operation will have control dependencies on the union
of control_inputs from all active contexts.

```python
with g.control_dependencies([a, b]):


# Ops constructed here run after a and b.
with g.control_dependencies([c, d]):


# Ops constructed here run after a, b, c, and d.







```

You can pass None to clear the control dependencies:

```python
with g.control_dependencies([a, b]):


# Ops constructed here run after a and b.
with g.control_dependencies(None):


# Ops constructed here run normally, not waiting for either a or b.
with g.control_dependencies([c, d]):


# Ops constructed here run after c and d, also not waiting
# for either a or b.










```

N.B. The control dependencies context applies only to ops that
are constructed within the context. Merely using an op or tensor
in the context does not add a control dependency. The following
example illustrates this point:

```python
# WRONG
def my_func(pred, tensor):


t = tf.matmul(tensor, tensor)
with tf.control_dependencies([pred]):


# The matmul op is created outside the context, so no control
# dependency will be added.
return t







# RIGHT
def my_func(pred, tensor):



	with tf.control_dependencies([pred]):

	# The matmul op is created in the context, so a control dependency
# will be added.
return tf.matmul(tensor, tensor)








```

Also note that though execution of ops created under this scope will trigger
execution of the dependencies, the ops created under this scope might still
be pruned from a normal tensorflow graph. For example, in the following
snippet of code the dependencies are never executed:


	```python

	loss = model.loss()
with tf.control_dependencies(dependencies):



	loss = loss + tf.constant(1)  # note: dependencies ignored in the

	# backward pass








return tf.gradients(loss, model.variables)





```

This is because evaluating the gradient graph does not require evaluating
the constant(1) op created in the forward pass.


	参数

	control_inputs – A list of Operation or Tensor objects which must be
executed or computed before running the operations defined in the
context.  Can also be None to clear the control dependencies.



	返回

	A context manager that specifies control dependencies for all
operations constructed within the context.



	Raises

	TypeError – If control_inputs is not a list of Operation or
Tensor objects.










	
create_op(op_type, inputs, dtypes=None, input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True, compute_device=True)

	Creates an Operation in this graph. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (compute_shapes). They will be removed in a future version.
Instructions for updating:
Shapes are always computed; don’t use the compute_shapes as it has no effect.

This is a low-level interface for creating an Operation. Most
programs will not call this method directly, and instead use the
Python op constructors, such as tf.constant(), which add ops to
the default graph.


	参数

	
	op_type – The Operation type to create. This corresponds to the
OpDef.name field for the proto that defines the operation.


	inputs – A list of Tensor objects that will be inputs to the Operation.


	dtypes – (Optional) A list of DType objects that will be the types of the
tensors that the operation produces.


	input_types – (Optional.) A list of DType`s that will be the types of the
tensors that the operation consumes. By default, uses the base `DType
of each input in inputs. Operations that expect reference-typed inputs
must specify input_types explicitly.


	name – (Optional.) A string name for the operation. If not specified, a
name is generated based on op_type.


	attrs – (Optional.) A dictionary where the key is the attribute name (a
string) and the value is the respective attr attribute of the
NodeDef proto that will represent the operation (an AttrValue
proto).


	op_def – (Optional.) The OpDef proto that describes the op_type that
the operation will have.


	compute_shapes – (Optional.) Deprecated. Has no effect (shapes are always
computed).


	compute_device – (Optional.) If True, device functions will be executed to
compute the device property of the Operation.






	Raises

	
	TypeError – if any of the inputs is not a Tensor.


	ValueError – if colocation conflicts with existing device assignment.






	返回

	An Operation object.










	
device(device_name_or_function)

	Returns a context manager that specifies the default device to use.

The device_name_or_function argument may either be a device name
string, a device function, or None:


	If it is a device name string, all operations constructed in
this context will be assigned to the device with that name, unless
overridden by a nested device() context.


	If it is a function, it will be treated as a function from
Operation objects to device name strings, and invoked each time
a new Operation is created. The Operation will be assigned to
the device with the returned name.


	If it is None, all device() invocations from the enclosing context
will be ignored.




For information about the valid syntax of device name strings, see
the documentation in
[DeviceNameUtils](https://www.tensorflow.org/code/tensorflow/core/util/device_name_utils.h).

For example:

```python
with g.device(‘/device:GPU:0’):


# All operations constructed in this context will be placed
# on GPU 0.
with g.device(None):


# All operations constructed in this context will have no
# assigned device.







# Defines a function from Operation to device string.
def matmul_on_gpu(n):



	if n.type == “MatMul”:

	return “/device:GPU:0”



	else:

	return “/cpu:0”









	with g.device(matmul_on_gpu):

	# All operations of type “MatMul” constructed in this context
# will be placed on GPU 0; all other operations will be placed
# on CPU 0.





```

N.B. The device scope may be overridden by op wrappers or
other library code. For example, a variable assignment op
v.assign() must be colocated with the tf.Variable v, and
incompatible device scopes will be ignored.


	参数

	device_name_or_function – The device name or function to use in the
context.



	Yields

	A context manager that specifies the default device to use for newly
created ops.



	Raises

	RuntimeError – If device scopes are not properly nested.










	
finalize()

	Finalizes this graph, making it read-only.

After calling g.finalize(), no new operations can be added to
g.  This method is used to ensure that no operations are added
to a graph when it is shared between multiple threads, for example
when using a tf.compat.v1.train.QueueRunner.






	
finalized

	True if this graph has been finalized.






	
get_all_collection_keys()

	Returns a list of collections used in this graph.






	
get_collection(name, scope=None)

	Returns a list of values in the collection with the given name.

This is different from get_collection_ref() which always returns the
actual collection list if it exists in that it returns a new list each time
it is called.


	参数

	
	name – The key for the collection. For example, the GraphKeys class
contains many standard names for collections.


	scope – (Optional.) A string. If supplied, the resulting list is filtered
to include only items whose name attribute matches scope using
re.match. Items without a name attribute are never returned if a
scope is supplied. The choice of re.match means that a scope without
special tokens filters by prefix.






	返回

	The list of values in the collection with the given name, or
an empty list if no value has been added to that collection. The
list contains the values in the order under which they were
collected.










	
get_collection_ref(name)

	Returns a list of values in the collection with the given name.

If the collection exists, this returns the list itself, which can
be modified in place to change the collection.  If the collection does
not exist, it is created as an empty list and the list is returned.

This is different from get_collection() which always returns a copy of
the collection list if it exists and never creates an empty collection.


	参数

	name – The key for the collection. For example, the GraphKeys class
contains many standard names for collections.



	返回

	The list of values in the collection with the given name, or an empty
list if no value has been added to that collection.










	
get_name_scope()

	Returns the current name scope.

For example:

```python
with tf.name_scope(‘scope1’):



	with tf.name_scope(‘scope2’):

	print(tf.compat.v1.get_default_graph().get_name_scope())








```
would print the string scope1/scope2.


	返回

	A string representing the current name scope.










	
get_operation_by_name(name)

	Returns the Operation with the given name.

This method may be called concurrently from multiple threads.


	参数

	name – The name of the Operation to return.



	返回

	The Operation with the given name.



	Raises

	
	TypeError – If name is not a string.


	KeyError – If name does not correspond to an operation in this graph.













	
get_operations()

	Return the list of operations in the graph.

You can modify the operations in place, but modifications
to the list such as inserts/delete have no effect on the
list of operations known to the graph.

This method may be called concurrently from multiple threads.


	返回

	A list of Operations.










	
get_tensor_by_name(name)

	Returns the Tensor with the given name.

This method may be called concurrently from multiple threads.


	参数

	name – The name of the Tensor to return.



	返回

	The Tensor with the given name.



	Raises

	
	TypeError – If name is not a string.


	KeyError – If name does not correspond to a tensor in this graph.













	
gradient_override_map(op_type_map)

	EXPERIMENTAL: A context manager for overriding gradient functions.

This context manager can be used to override the gradient function
that will be used for ops within the scope of the context.

For example:

```python
@tf.RegisterGradient(“CustomSquare”)
def _custom_square_grad(op, grad):


# …





	with tf.Graph().as_default() as g:

	c = tf.constant(5.0)
s_1 = tf.square(c)  # Uses the default gradient for tf.square.
with g.gradient_override_map({“Square”: “CustomSquare”}):



	s_2 = tf.square(s_2)  # Uses _custom_square_grad to compute the

	# gradient of s_2.












```


	参数

	op_type_map – A dictionary mapping op type strings to alternative op type
strings.



	返回

	A context manager that sets the alternative op type to be used for one
or more ops created in that context.



	Raises

	TypeError – If op_type_map is not a dictionary mapping strings to
strings.










	
graph_def_versions

	The GraphDef version information of this graph.

For details on the meaning of each version, see
[GraphDef](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto).


	返回

	A VersionDef.










	
is_feedable(tensor)

	Returns True if and only if tensor is feedable.






	
is_fetchable(tensor_or_op)

	Returns True if and only if tensor_or_op is fetchable.






	
name_scope(name)

	Returns a context manager that creates hierarchical names for operations.

A graph maintains a stack of name scopes. A with name_scope(…):
statement pushes a new name onto the stack for the lifetime of the context.

The name argument will be interpreted as follows:


	A string (not ending with ‘/’) will create a new name scope, in which
name is appended to the prefix of all operations created in the
context. If name has been used before, it will be made unique by
calling self.unique_name(name).


	A scope previously captured from a with g.name_scope(…) as
scope: statement will be treated as an “absolute” name scope, which
makes it possible to re-enter existing scopes.


	A value of None or the empty string will reset the current name scope
to the top-level (empty) name scope.




For example:

```python
with tf.Graph().as_default() as g:


c = tf.constant(5.0, name=”c”)
assert c.op.name == “c”
c_1 = tf.constant(6.0, name=”c”)
assert c_1.op.name == “c_1”

# Creates a scope called “nested”
with g.name_scope(“nested”) as scope:


nested_c = tf.constant(10.0, name=”c”)
assert nested_c.op.name == “nested/c”

# Creates a nested scope called “inner”.
with g.name_scope(“inner”):


nested_inner_c = tf.constant(20.0, name=”c”)
assert nested_inner_c.op.name == “nested/inner/c”




# Create a nested scope called “inner_1”.
with g.name_scope(“inner”):


nested_inner_1_c = tf.constant(30.0, name=”c”)
assert nested_inner_1_c.op.name == “nested/inner_1/c”

# Treats scope as an absolute name scope, and
# switches to the “nested/” scope.
with g.name_scope(scope):


nested_d = tf.constant(40.0, name=”d”)
assert nested_d.op.name == “nested/d”


	with g.name_scope(“”):

	e = tf.constant(50.0, name=”e”)
assert e.op.name == “e”

















```

The name of the scope itself can be captured by with
g.name_scope(…) as scope:, which stores the name of the scope
in the variable scope. This value can be used to name an
operation that represents the overall result of executing the ops
in a scope. For example:

```python
inputs = tf.constant(…)
with g.name_scope(‘my_layer’) as scope:


weights = tf.Variable(…, name=”weights”)
biases = tf.Variable(…, name=”biases”)
affine = tf.matmul(inputs, weights) + biases
output = tf.nn.relu(affine, name=scope)




```

NOTE: This constructor validates the given name. Valid scope
names match one of the following regular expressions:


[A-Za-z0-9.][A-Za-z0-9_.-/]* (for scopes at the root)
[A-Za-z0-9_.-/]* (for other scopes)





	参数

	name – A name for the scope.



	返回

	A context manager that installs name as a new name scope.



	Raises

	ValueError – If name is not a valid scope name, according to the rules
above.










	
prevent_feeding(tensor)

	Marks the given tensor as unfeedable in this graph.






	
prevent_fetching(op)

	Marks the given op as unfetchable in this graph.






	
seed

	The graph-level random seed of this graph.






	
switch_to_thread_local()

	Make device, colocation and dependencies stacks thread-local.

Device, colocation and dependencies stacks are not thread-local be default.
If multiple threads access them, then the state is shared.  This means that
one thread may affect the behavior of another thread.

After this method is called, the stacks become thread-local.  If multiple
threads access them, then the state is not shared.  Each thread uses its own
value; a thread doesn’t affect other threads by mutating such a stack.

The initial value for every thread’s stack is set to the current value
of the stack when switch_to_thread_local() was first called.






	
unique_name(name, mark_as_used=True)

	Return a unique operation name for name.

Note: You rarely need to call unique_name() directly.  Most of
the time you just need to create with g.name_scope() blocks to
generate structured names.

unique_name is used to generate structured names, separated by
“/”, to help identify operations when debugging a graph.
Operation names are displayed in error messages reported by the
TensorFlow runtime, and in various visualization tools such as
TensorBoard.

If mark_as_used is set to True, which is the default, a new
unique name is created and marked as in use. If it’s set to False,
the unique name is returned without actually being marked as used.
This is useful when the caller simply wants to know what the name
to be created will be.


	参数

	
	name – The name for an operation.


	mark_as_used – Whether to mark this name as being used.






	返回

	A string to be passed to create_op() that will be used
to name the operation being created.










	
version

	Returns a version number that increases as ops are added to the graph.

Note that this is unrelated to the
tf.Graph.graph_def_versions.


	返回

	An integer version that increases as ops are added to the graph.














	
class tensorflow.IndexedSlices(values, indices, dense_shape=None)

	基类：tensorflow.python.framework.tensor_like._TensorLike, tensorflow.python.framework.composite_tensor.CompositeTensor

A sparse representation of a set of tensor slices at given indices.

This class is a simple wrapper for a pair of Tensor objects:


	values: A Tensor of any dtype with shape [D0, D1, …, Dn].


	indices: A 1-D integer Tensor with shape [D0].




An IndexedSlices is typically used to represent a subset of a larger
tensor dense of shape [LARGE0, D1, .. , DN] where LARGE0 >> D0.
The values in indices are the indices in the first dimension of
the slices that have been extracted from the larger tensor.

The dense tensor dense represented by an IndexedSlices slices has

`python
dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]
`

The IndexedSlices class is used principally in the definition of
gradients for operations that have sparse gradients
(e.g. tf.gather).

Contrast this representation with
tf.SparseTensor,
which uses multi-dimensional indices and scalar values.

Creates an IndexedSlices.


	
consumers()

	




	
dense_shape

	A 1-D Tensor containing the shape of the corresponding dense tensor.






	
device

	The name of the device on which values will be produced, or None.






	
dtype

	The DType of elements in this tensor.






	
graph

	The Graph that contains the values, indices, and shape tensors.






	
indices

	A 1-D Tensor containing the indices of the slices.






	
name

	The name of this IndexedSlices.






	
op

	The Operation that produces values as an output.






	
shape

	Gets the tf.TensorShape representing the shape of the dense tensor.


	返回

	A tf.TensorShape object.










	
values

	A Tensor containing the values of the slices.










	
class tensorflow.IndexedSlicesSpec(shape=None, dtype=tf.float32, indices_dtype=tf.int64, dense_shape_dtype=None, indices_shape=None)

	基类：tensorflow.python.framework.type_spec.TypeSpec

Type specification for a tf.IndexedSlices.

Constructs a type specification for a tf.IndexedSlices.


	参数

	
	shape – The dense shape of the IndexedSlices, or None to allow any
dense shape.


	dtype – tf.DType of values in the IndexedSlices.


	indices_dtype – tf.DType of the indices in the IndexedSlices.  One
of tf.int32 or tf.int64.


	dense_shape_dtype – tf.DType of the dense_shape in the IndexedSlices.
One of tf.int32, tf.int64, or None (if the IndexedSlices has
no dense_shape tensor).


	indices_shape – The shape of the indices component, which indicates
how many slices are in the IndexedSlices.









	
value_type

	








	
class tensorflow.Module(name=None)

	基类：tensorflow.python.training.tracking.tracking.AutoTrackable

Base neural network module class.

A module is a named container for tf.Variable`s, other `tf.Module`s and
functions which apply to user input. For example a dense layer in a neural
network might be implemented as a `tf.Module:

>>> class Dense(tf.Module):
...   def __init__(self, in_features, out_features, name=None):
...     super(Dense, self).__init__(name=name)
...     self.w = tf.Variable(
...       tf.random.normal([in_features, out_features]), name='w')
...     self.b = tf.Variable(tf.zeros([out_features]), name='b')
...   def __call__(self, x):
...     y = tf.matmul(x, self.w) + self.b
...     return tf.nn.relu(y)





You can use the Dense layer as you would expect:

>>> d = Dense(in_features=3, out_features=2)
>>> d(tf.ones([1, 3]))
<tf.Tensor: shape=(1, 2), dtype=float32, numpy=..., dtype=float32)>





By subclassing tf.Module instead of object any tf.Variable or
tf.Module instances assigned to object properties can be collected using
the variables, trainable_variables or submodules property:

>>> d.variables
    (<tf.Variable 'b:0' shape=(2,) dtype=float32, numpy=...,
    dtype=float32)>,
    <tf.Variable 'w:0' shape=(3, 2) dtype=float32, numpy=..., dtype=float32)>)





Subclasses of tf.Module can also take advantage of the _flatten method
which can be used to implement tracking of any other types.

All tf.Module classes have an associated tf.name_scope which can be used
to group operations in TensorBoard and create hierarchies for variable names
which can help with debugging. We suggest using the name scope when creating
nested submodules/parameters or for forward methods whose graph you might want
to inspect in TensorBoard. You can enter the name scope explicitly using
with self.name_scope: or you can annotate methods (apart from __init__)
with @tf.Module.with_name_scope.

```python
class MLP(tf.Module):



	def __init__(self, input_size, sizes, name=None):

	super(MLP, self).__init__(name=name)
self.layers = []
with self.name_scope:



	for size in sizes:

	self.layers.append(Dense(input_size=input_size, output_size=size))
input_size = size












@tf.Module.with_name_scope
def __call__(self, x):



	for layer in self.layers:

	x = layer(x)





return x







```


	
name

	Returns the name of this module as passed or determined in the ctor.

NOTE: This is not the same as the self.name_scope.name which includes
parent module names.






	
name_scope

	Returns a tf.name_scope instance for this class.






	
submodules

	Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as
properties of modules which are properties of this module (and so on).

>>> a = tf.Module()
>>> b = tf.Module()
>>> c = tf.Module()
>>> a.b = b
>>> b.c = c
>>> list(a.submodules) == [b, c]
True
>>> list(b.submodules) == [c]
True
>>> list(c.submodules) == []
True






	返回

	A sequence of all submodules.










	
trainable_variables

	Sequence of trainable variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance
and submodules. For performance reasons you may wish to cache the result
of calling this method if you don’t expect the return value to change.


	返回

	A sequence of variables for the current module (sorted by attribute
name) followed by variables from all submodules recursively (breadth
first).










	
variables

	Sequence of variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance
and submodules. For performance reasons you may wish to cache the result
of calling this method if you don’t expect the return value to change.


	返回

	A sequence of variables for the current module (sorted by attribute
name) followed by variables from all submodules recursively (breadth
first).










	
classmethod with_name_scope(method)

	Decorator to automatically enter the module name scope.

>>> class MyModule(tf.Module):
...   @tf.Module.with_name_scope
...   def __call__(self, x):
...     if not hasattr(self, 'w'):
...       self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
...     return tf.matmul(x, self.w)





Using the above module would produce `tf.Variable`s and `tf.Tensor`s whose
names included the module name:

>>> mod = MyModule()
>>> mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
>>> mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>






	参数

	method – The method to wrap.



	返回

	The original method wrapped such that it enters the module’s name scope.














	
class tensorflow.Operation(node_def, g, inputs=None, output_types=None, control_inputs=None, input_types=None, original_op=None, op_def=None)

	基类：object

Represents a graph node that performs computation on tensors.

An Operation is a node in a tf.Graph that takes zero or more Tensor
objects as input, and produces zero or more Tensor objects as output.
Objects of type Operation are created by calling a Python op constructor
(such as tf.matmul) within a tf.function or under a tf.Graph.as_default
context manager.

For example, within a tf.function, c = tf.matmul(a, b) creates an
Operation of type “MatMul” that takes tensors a and b as input, and
produces c as output.

If a tf.compat.v1.Session is used, an Operation of a tf.Graph can be
executed by passing it to tf.Session.run. op.run() is a shortcut for
calling tf.compat.v1.get_default_session().run(op).

Creates an Operation.

NOTE: This constructor validates the name of the Operation (passed
as node_def.name). Valid Operation names match the following
regular expression:


[A-Za-z0-9.][A-Za-z0-9_.-/]*





	参数

	
	node_def – node_def_pb2.NodeDef.  NodeDef for the Operation. Used for
attributes of node_def_pb2.NodeDef, typically name, op, and
device.  The input attribute is irrelevant here as it will be
computed when generating the model.


	g – Graph. The parent graph.


	inputs – list of Tensor objects. The inputs to this Operation.


	output_types – list of DType objects.  List of the types of the Tensors
computed by this operation.  The length of this list indicates the
number of output endpoints of the Operation.


	control_inputs – list of operations or tensors from which to have a control
dependency.


	input_types – List of DType objects representing the types of the tensors
accepted by the Operation.  By default uses [x.dtype.base_dtype for x
in inputs].  Operations that expect reference-typed inputs must specify
these explicitly.


	original_op – Optional. Used to associate the new Operation with an
existing Operation (for example, a replica with the op that was
replicated).


	op_def – Optional. The op_def_pb2.OpDef proto that describes the op type
that this Operation represents.






	Raises

	
	TypeError – if control inputs are not Operations or Tensors,
or if node_def is not a NodeDef,
or if g is not a Graph,
or if inputs are not tensors,
or if inputs and input_types are incompatible.


	ValueError – if the node_def name is not valid.









	
colocation_groups()

	Returns the list of colocation groups of the op.






	
control_inputs

	The Operation objects on which this op has a control dependency.

Before this op is executed, TensorFlow will ensure that the
operations in self.control_inputs have finished executing. This
mechanism can be used to run ops sequentially for performance
reasons, or to ensure that the side effects of an op are observed
in the correct order.


	返回

	A list of Operation objects.










	
device

	The name of the device to which this op has been assigned, if any.


	返回

	The string name of the device to which this op has been
assigned, or an empty string if it has not been assigned to a
device.










	
get_attr(name)

	Returns the value of the attr of this op with the given name.


	参数

	name – The name of the attr to fetch.



	返回

	The value of the attr, as a Python object.



	Raises

	ValueError – If this op does not have an attr with the given name.










	
graph

	The Graph that contains this operation.






	
inputs

	The sequence of Tensor objects representing the data inputs of this op.






	
name

	The full name of this operation.






	
node_def

	Returns the NodeDef representation of this operation.


	返回

	A
[NodeDef](https://www.tensorflow.org/code/tensorflow/core/framework/node_def.proto)
protocol buffer.










	
op_def

	Returns the OpDef proto that represents the type of this op.


	返回

	An
[OpDef](https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto)
protocol buffer.










	
outputs

	The list of Tensor objects representing the outputs of this op.






	
run(feed_dict=None, session=None)

	Runs this operation in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for this operation.

N.B. Before invoking Operation.run(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.


	参数

	
	feed_dict – A dictionary that maps Tensor objects to feed values. See
tf.Session.run for a description of the valid feed values.


	session – (Optional.) The Session to be used to run to this operation. If
none, the default session will be used.













	
traceback

	Returns the call stack from when this operation was constructed.






	
type

	The type of the op (e.g. “MatMul”).






	
values()

	DEPRECATED: Use outputs.










	
class tensorflow.OptionalSpec(value_structure)

	基类：tensorflow.python.framework.type_spec.TypeSpec

Represents an optional potentially containing a structured value.


	
static from_value(value)

	




	
value_type

	The Python type for values that are compatible with this TypeSpec.










	
class tensorflow.RaggedTensor(values, row_splits, cached_row_lengths=None, cached_value_rowids=None, cached_nrows=None, internal=False, uniform_row_length=None)

	基类：tensorflow.python.framework.composite_tensor.CompositeTensor

Represents a ragged tensor.

A RaggedTensor is a tensor with one or more ragged dimensions, which are
dimensions whose slices may have different lengths.  For example, the inner
(column) dimension of rt=[[3, 1, 4, 1], [], [5, 9, 2], [6], []] is ragged,
since the column slices (rt[0, :], …, rt[4, :]) have different lengths.
Dimensions whose slices all have the same length are called uniform
dimensions.  The outermost dimension of a RaggedTensor is always uniform,
since it consists of a single slice (and so there is no possibility for
differing slice lengths).

The total number of dimensions in a RaggedTensor is called its rank,
and the number of ragged dimensions in a RaggedTensor is called its
ragged-rank.  A RaggedTensor’s ragged-rank is fixed at graph creation
time: it can’t depend on the runtime values of `Tensor`s, and can’t vary
dynamically for different session runs.

### Potentially Ragged Tensors

Many ops support both Tensor`s and `RaggedTensor`s.  The term “potentially
ragged tensor” may be used to refer to a tensor that might be either a
`Tensor or a RaggedTensor.  The ragged-rank of a Tensor is zero.

### Documenting RaggedTensor Shapes

When documenting the shape of a RaggedTensor, ragged dimensions can be
indicated by enclosing them in parentheses.  For example, the shape of
a 3-D RaggedTensor that stores the fixed-size word embedding for each
word in a sentence, for each sentence in a batch, could be written as
[num_sentences, (num_words), embedding_size].  The parentheses around
(num_words) indicate that dimension is ragged, and that the length
of each element list in that dimension may vary for each item.

### Component Tensors

Internally, a RaggedTensor consists of a concatenated list of values that
are partitioned into variable-length rows.  In particular, each RaggedTensor
consists of:



	A values tensor, which concatenates the variable-length rows into a
flattened list.  For example, the values tensor for
[[3, 1, 4, 1], [], [5, 9, 2], [6], []] is [3, 1, 4, 1, 5, 9, 2, 6].


	A row_splits vector, which indicates how those flattened values are
divided into rows.  In particular, the values for row rt[i] are stored
in the slice rt.values[rt.row_splits[i]:rt.row_splits[i+1]].







Example:

>>> print(tf.RaggedTensor.from_row_splits(
...       values=[3, 1, 4, 1, 5, 9, 2, 6],
...       row_splits=[0, 4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>





### Alternative Row-Partitioning Schemes

In addition to row_splits, ragged tensors provide support for four other
row-partitioning schemes:



	row_lengths: a vector with shape [nrows], which specifies the length
of each row.


	value_rowids and nrows: value_rowids is a vector with shape
[nvals], corresponding one-to-one with values, which specifies
each value’s row index.  In particular, the row rt[row] consists of the
values rt.values[j] where value_rowids[j]==row.  nrows is an
integer scalar that specifies the number of rows in the
RaggedTensor. (nrows is used to indicate trailing empty rows.)


	row_starts: a vector with shape [nrows], which specifies the start
offset of each row.  Equivalent to row_splits[:-1].


	row_limits: a vector with shape [nrows], which specifies the stop
offset of each row.  Equivalent to row_splits[1:].


	uniform_row_length: A scalar tensor, specifying the length of every
row.  This row-partitioning scheme may only be used if all rows have
the same length.







Example: The following ragged tensors are equivalent, and all represent the
nested list [[3, 1, 4, 1], [], [5, 9, 2], [6], []].

>>> values = [3, 1, 4, 1, 5, 9, 2, 6]
>>> rt1 = RaggedTensor.from_row_splits(values, row_splits=[0, 4, 4, 7, 8, 8])
>>> rt2 = RaggedTensor.from_row_lengths(values, row_lengths=[4, 0, 3, 1, 0])
>>> rt3 = RaggedTensor.from_value_rowids(
...     values, value_rowids=[0, 0, 0, 0, 2, 2, 2, 3], nrows=5)
>>> rt4 = RaggedTensor.from_row_starts(values, row_starts=[0, 4, 4, 7, 8])
>>> rt5 = RaggedTensor.from_row_limits(values, row_limits=[4, 4, 7, 8, 8])





### Multiple Ragged Dimensions

RaggedTensor`s with multiple ragged dimensions can be defined by using
a nested `RaggedTensor for the values tensor.  Each nested RaggedTensor
adds a single ragged dimension.

>>> inner_rt = RaggedTensor.from_row_splits(  # =rt1 from above
...     values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8])
>>> outer_rt = RaggedTensor.from_row_splits(
...     values=inner_rt, row_splits=[0, 3, 3, 5])
>>> print(outer_rt.to_list())
[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]
>>> print(outer_rt.ragged_rank)
2





The factory function RaggedTensor.from_nested_row_splits may be used to
construct a RaggedTensor with multiple ragged dimensions directly, by
providing a list of row_splits tensors:

>>> RaggedTensor.from_nested_row_splits(
...     flat_values=[3, 1, 4, 1, 5, 9, 2, 6],
...     nested_row_splits=([0, 3, 3, 5], [0, 4, 4, 7, 8, 8])).to_list()
[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]





### Uniform Inner Dimensions

RaggedTensor`s with uniform inner dimensions can be defined
by using a multidimensional `Tensor for values.

>>> rt = RaggedTensor.from_row_splits(values=tf.ones([5, 3], tf.int32),
...                                   row_splits=[0, 2, 5])
>>> print(rt.to_list())
[[[1, 1, 1], [1, 1, 1]],
 [[1, 1, 1], [1, 1, 1], [1, 1, 1]]]
>>> print(rt.shape)
(2, None, 3)





### Uniform Outer Dimensions

RaggedTensor`s with uniform outer dimensions can be defined by using
one or more `RaggedTensor with a uniform_row_length row-partitioning
tensor.  For example, a RaggedTensor with shape [2, 2, None] can be
constructed with this method from a RaggedTensor values with shape
[4, None]:

>>> values = tf.ragged.constant([[1, 2, 3], [4], [5, 6], [7, 8, 9, 10]])
>>> print(values.shape)
(4, None)
>>> rt6 = tf.RaggedTensor.from_uniform_row_length(values, 2)
>>> print(rt6)
<tf.RaggedTensor [[[1, 2, 3], [4]], [[5, 6], [7, 8, 9, 10]]]>
>>> print(rt6.shape)
(2, 2, None)





Note that rt6 only contains one ragged dimension (the innermost
dimension). In contrast, if from_row_splits is used to construct a similar
RaggedTensor, then that RaggedTensor will have two ragged dimensions:

>>> rt7 = tf.RaggedTensor.from_row_splits(values, [0, 2, 4])
>>> print(rt7.shape)
(2, None, None)





Uniform and ragged outer dimensions may be interleaved, meaning that a
tensor with any combination of ragged and uniform dimensions may be created.
For example, a RaggedTensor t4 with shape [3, None, 4, 8, None, 2] could
be constructed as follows:

`python
t0 = tf.zeros([1000, 2])                           # Shape:         [1000, 2]
t1 = RaggedTensor.from_row_lengths(t0, [...])      #           [160, None, 2]
t2 = RaggedTensor.from_uniform_row_length(t1, 8)   #         [20, 8, None, 2]
t3 = RaggedTensor.from_uniform_row_length(t2, 4)   #       [5, 4, 8, None, 2]
t4 = RaggedTensor.from_row_lengths(t3, [...])      # [3, None, 4, 8, None, 2]
`

Creates a RaggedTensor with a specified partitioning for values.

This constructor is private – please use one of the following ops to
build `RaggedTensor`s:



	tf.RaggedTensor.from_row_lengths


	tf.RaggedTensor.from_value_rowids


	tf.RaggedTensor.from_row_splits


	tf.RaggedTensor.from_row_starts


	tf.RaggedTensor.from_row_limits


	tf.RaggedTensor.from_nested_row_splits


	tf.RaggedTensor.from_nested_row_lengths


	tf.RaggedTensor.from_nested_value_rowids








	参数

	
	values – A potentially ragged tensor of any dtype and shape [nvals, …].


	row_splits – A 1-D integer tensor with shape [nrows+1].


	cached_row_lengths – A 1-D integer tensor with shape [nrows]


	cached_value_rowids – A 1-D integer tensor with shape [nvals].


	cached_nrows – A 1-D integer scalar tensor.


	internal – True if the constructor is being called by one of the factory
methods.  If false, an exception will be raised.


	uniform_row_length – A scalar tensor.






	Raises

	
	TypeError – If a row partitioning tensor has an inappropriate dtype.


	TypeError – If exactly one row partitioning argument was not specified.


	ValueError – If a row partitioning tensor has an inappropriate shape.


	ValueError – If multiple partitioning arguments are specified.


	ValueError – If nrows is specified but value_rowids is not None.









	
bounding_shape(axis=None, name=None, out_type=None)

	Returns the tight bounding box shape for this RaggedTensor.


	参数

	
	axis – An integer scalar or vector indicating which axes to return the
bounding box for.  If not specified, then the full bounding box is
returned.


	name – A name prefix for the returned tensor (optional).


	out_type – dtype for the returned tensor.  Defaults to
self.row_splits.dtype.






	返回

	An integer Tensor (dtype=self.row_splits.dtype).  If axis is not
specified, then output is a vector with
output.shape=[self.shape.ndims].  If axis is a scalar, then the
output is a scalar.  If axis is a vector, then output is a vector,
where output[i] is the bounding size for dimension axis[i].





#### Example:

>>> rt = tf.ragged.constant([[1, 2, 3, 4], [5], [], [6, 7, 8, 9], [10]])
>>> rt.bounding_shape().numpy()
array([5, 4])










	
consumers()

	




	
dtype

	The DType of values in this tensor.






	
flat_values

	The innermost values tensor for this ragged tensor.

Concretely, if rt.values is a Tensor, then rt.flat_values is
rt.values; otherwise, rt.flat_values is rt.values.flat_values.

Conceptually, flat_values is the tensor formed by flattening the
outermost dimension and all of the ragged dimensions into a single
dimension.

rt.flat_values.shape = [nvals] + rt.shape[rt.ragged_rank + 1:]
(where nvals is the number of items in the flattened dimensions).


	返回

	A Tensor.





#### Example:

>>> rt = tf.ragged.constant([[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]])
>>> print(rt.flat_values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)










	
classmethod from_nested_row_lengths(flat_values, nested_row_lengths, name=None, validate=True)

	Creates a RaggedTensor from a nested list of row_lengths tensors.

Equivalent to:

```python
result = flat_values
for row_lengths in reversed(nested_row_lengths):


result = from_row_lengths(result, row_lengths)




```


	参数

	
	flat_values – A potentially ragged tensor.


	nested_row_lengths – A list of 1-D integer tensors.  The i`th tensor is
used as the `row_lengths for the `i`th ragged dimension.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor (or flat_values if nested_row_lengths is empty).










	
classmethod from_nested_row_splits(flat_values, nested_row_splits, name=None, validate=True)

	Creates a RaggedTensor from a nested list of row_splits tensors.

Equivalent to:

```python
result = flat_values
for row_splits in reversed(nested_row_splits):


result = from_row_splits(result, row_splits)




```


	参数

	
	flat_values – A potentially ragged tensor.


	nested_row_splits – A list of 1-D integer tensors.  The i`th tensor is
used as the `row_splits for the `i`th ragged dimension.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor (or flat_values if nested_row_splits is empty).










	
classmethod from_nested_value_rowids(flat_values, nested_value_rowids, nested_nrows=None, name=None, validate=True)

	Creates a RaggedTensor from a nested list of value_rowids tensors.

Equivalent to:

```python
result = flat_values
for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):


result = from_value_rowids(result, rowids, nrows)




```


	参数

	
	flat_values – A potentially ragged tensor.


	nested_value_rowids – A list of 1-D integer tensors.  The i`th tensor is
used as the `value_rowids for the `i`th ragged dimension.


	nested_nrows – A list of integer scalars.  The i`th scalar is used as the
`nrows for the `i`th ragged dimension.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor (or flat_values if nested_value_rowids is empty).



	Raises

	ValueError – If len(nested_values_rowids) != len(nested_nrows).










	
classmethod from_row_lengths(values, row_lengths, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by row_lengths.

The returned RaggedTensor corresponds with the python list defined by:

```python
result = [[values.pop(0) for i in range(length)]


for length in row_lengths]




```


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	row_lengths – A 1-D integer tensor with shape [nrows].  Must be
nonnegative.  sum(row_lengths) must be nvals.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.





#### Example:

>>> print(tf.RaggedTensor.from_row_lengths(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_lengths=[4, 0, 3, 1, 0]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
classmethod from_row_limits(values, row_limits, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by row_limits.

Equivalent to: from_row_splits(values, concat([0, row_limits])).


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	row_limits – A 1-D integer tensor with shape [nrows].  Must be sorted in
ascending order.  If nrows>0, then row_limits[-1] must be nvals.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.





#### Example:

>>> print(tf.RaggedTensor.from_row_limits(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_limits=[4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
classmethod from_row_splits(values, row_splits, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by row_splits.

The returned RaggedTensor corresponds with the python list defined by:

```python
result = [values[row_splits[i]:row_splits[i + 1]]


for i in range(len(row_splits) - 1)]




```


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	row_splits – A 1-D integer tensor with shape [nrows+1].  Must not be
empty, and must be sorted in ascending order.  row_splits[0] must be
zero and row_splits[-1] must be nvals.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.



	Raises

	ValueError – If row_splits is an empty list.





#### Example:

>>> print(tf.RaggedTensor.from_row_splits(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_splits=[0, 4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
classmethod from_row_starts(values, row_starts, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by row_starts.

Equivalent to: from_row_splits(values, concat([row_starts, nvals])).


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	row_starts – A 1-D integer tensor with shape [nrows].  Must be
nonnegative and sorted in ascending order.  If nrows>0, then
row_starts[0] must be zero.


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.





#### Example:

>>> print(tf.RaggedTensor.from_row_starts(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_starts=[0, 4, 4, 7, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
classmethod from_sparse(st_input, name=None, row_splits_dtype=tf.int64)

	Converts a 2D tf.SparseTensor to a RaggedTensor.

Each row of the output RaggedTensor will contain the explicit values
from the same row in st_input.  st_input must be ragged-right.  If not
it is not ragged-right, then an error will be generated.

Example:

>>> st = tf.SparseTensor(indices=[[0, 0], [0, 1], [0, 2], [1, 0], [3, 0]],
...                      values=[1, 2, 3, 4, 5],
...                      dense_shape=[4, 3])
>>> tf.RaggedTensor.from_sparse(st).to_list()
[[1, 2, 3], [4], [], [5]]





Currently, only two-dimensional SparseTensors are supported.


	参数

	
	st_input – The sparse tensor to convert.  Must have rank 2.


	name – A name prefix for the returned tensors (optional).


	row_splits_dtype – dtype for the returned RaggedTensor’s row_splits
tensor.  One of tf.int32 or tf.int64.






	返回

	A RaggedTensor with the same values as st_input.
output.ragged_rank = rank(st_input) - 1.
output.shape = [st_input.dense_shape[0], None].



	Raises

	ValueError – If the number of dimensions in st_input is not known
statically, or is not two.










	
classmethod from_tensor(tensor, lengths=None, padding=None, ragged_rank=1, name=None, row_splits_dtype=tf.int64)

	Converts a tf.Tensor into a RaggedTensor.

The set of absent/default values may be specified using a vector of lengths
or a padding value (but not both).  If lengths is specified, then the
output tensor will satisfy output[row] = tensor[row][:lengths[row]]. If
‘lengths’ is a list of lists or tuple of lists, those lists will be used
as nested row lengths. If padding is specified, then any row suffix
consisting entirely of padding will be excluded from the returned
RaggedTensor.  If neither lengths nor padding is specified, then the
returned RaggedTensor will have no absent/default values.

Examples:

>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
>>> tf.RaggedTensor.from_tensor(dt)
<tf.RaggedTensor [[5, 7, 0], [0, 3, 0], [6, 0, 0]]>
>>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
<tf.RaggedTensor [[5], [], [6, 0, 0]]>





>>> tf.RaggedTensor.from_tensor(dt, padding=0)
<tf.RaggedTensor [[5, 7], [0, 3], [6]]>





>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]],
...                   [[0, 0], [3, 0], [0, 0]],
...                   [[6, 0], [0, 0], [0, 0]]])
>>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))
<tf.RaggedTensor [[[5], [7]], [], [[6, 0], [], [0]]]>






	参数

	
	tensor – The Tensor to convert.  Must have rank ragged_rank + 1 or
higher.


	lengths – An optional set of row lengths, specified using a 1-D integer
Tensor whose length is equal to tensor.shape[0] (the number of rows
in tensor).  If specified, then output[row] will contain
tensor[row][:lengths[row]].  Negative lengths are treated as zero. You
may optionally pass a list or tuple of lengths to this argument, which
will be used as nested row lengths to construct a ragged tensor with
multiple ragged dimensions.


	padding – An optional padding value.  If specified, then any row suffix
consisting entirely of padding will be excluded from the returned
RaggedTensor.  padding is a Tensor with the same dtype as tensor
and with shape=tensor.shape[ragged_rank + 1:].


	ragged_rank – Integer specifying the ragged rank for the returned
RaggedTensor.  Must be greater than zero.


	name – A name prefix for the returned tensors (optional).


	row_splits_dtype – dtype for the returned RaggedTensor’s row_splits
tensor.  One of tf.int32 or tf.int64.






	返回

	A RaggedTensor with the specified ragged_rank.  The shape of the
returned ragged tensor is compatible with the shape of tensor.



	Raises

	ValueError – If both lengths and padding are specified.










	
classmethod from_uniform_row_length(values, uniform_row_length, nrows=None, validate=True, name=None)

	Creates a RaggedTensor with rows partitioned by uniform_row_length.

This method can be used to create RaggedTensor`s with multiple uniform
outer dimensions.  For example, a `RaggedTensor with shape [2, 2, None]
can be constructed with this method from a RaggedTensor values with shape
[4, None]:

>>> values = tf.ragged.constant([[1, 2, 3], [4], [5, 6], [7, 8, 9, 10]])
>>> print(values.shape)
(4, None)
>>> rt1 = tf.RaggedTensor.from_uniform_row_length(values, 2)
>>> print(rt1)
<tf.RaggedTensor [[[1, 2, 3], [4]], [[5, 6], [7, 8, 9, 10]]]>
>>> print(rt1.shape)
(2, 2, None)





Note that rt1 only contains one ragged dimension (the innermost
dimension). In contrast, if from_row_splits is used to construct a similar
RaggedTensor, then that RaggedTensor will have two ragged dimensions:

>>> rt2 = tf.RaggedTensor.from_row_splits(values, [0, 2, 4])
>>> print(rt2.shape)
(2, None, None)






	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	uniform_row_length – A scalar integer tensor.  Must be nonnegative.
The size of the outer axis of values must be evenly divisible by
uniform_row_length.


	nrows – The number of rows in the constructed RaggedTensor.  If not
specified, then it defaults to nvals/uniform_row_length (or 0 if
uniform_row_length==0).  nrows only needs to be specified if
uniform_row_length might be zero.  uniform_row_length*nrows must
be nvals.


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.


	name – A name prefix for the RaggedTensor (optional).






	返回

	```python
result = [[values.pop(0) for i in range(uniform_row_length)]


for _ in range(nrows)]




```

result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.





	返回类型

	A RaggedTensor that corresponds with the python list defined by










	
classmethod from_value_rowids(values, value_rowids, nrows=None, name=None, validate=True)

	Creates a RaggedTensor with rows partitioned by value_rowids.

The returned RaggedTensor corresponds with the python list defined by:

```python
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]


for row in range(nrows)]




```


	参数

	
	values – A potentially ragged tensor with shape [nvals, …].


	value_rowids – A 1-D integer tensor with shape [nvals], which corresponds
one-to-one with values, and specifies each value’s row index.  Must be
nonnegative, and must be sorted in ascending order.


	nrows – An integer scalar specifying the number of rows.  This should be
specified if the RaggedTensor may containing empty training rows. Must
be greater than value_rowids[-1] (or zero if value_rowids is empty).
Defaults to value_rowids[-1] (or zero if value_rowids is empty).


	name – A name prefix for the RaggedTensor (optional).


	validate – If true, then use assertions to check that the arguments form
a valid RaggedTensor.  Note: these assertions incur a runtime cost,
since they must be checked for each tensor value.






	返回

	A RaggedTensor.  result.rank = values.rank + 1.
result.ragged_rank = values.ragged_rank + 1.



	Raises

	ValueError – If nrows is incompatible with value_rowids.





#### Example:

>>> print(tf.RaggedTensor.from_value_rowids(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     value_rowids=[0, 0, 0, 0, 2, 2, 2, 3],
...     nrows=5))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>










	
merge_dims(outer_axis, inner_axis)

	Merges outer_axis…inner_axis into a single dimension.

Returns a copy of this RaggedTensor with the specified range of dimensions
flattened into a single dimension, with elements in row-major order.

#### Examples:

>>> rt = tf.ragged.constant([[[1, 2], [3]], [[4, 5, 6]]])
>>> print(rt.merge_dims(0, 1))
<tf.RaggedTensor [[1, 2], [3], [4, 5, 6]]>
>>> print(rt.merge_dims(1, 2))
<tf.RaggedTensor [[1, 2, 3], [4, 5, 6]]>
>>> print(rt.merge_dims(0, 2))
tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32)





To mimic the behavior of np.flatten (which flattens all dimensions), use
rt.merge_dims(0, -1).  To mimic the behavior of `tf.layers.Flatten (which
flattens all dimensions except the outermost batch dimension), use
rt.merge_dims(1, -1).


	参数

	
	outer_axis – int: The first dimension in the range of dimensions to
merge. May be negative if self.shape.rank is statically known.


	inner_axis – int: The last dimension in the range of dimensions to
merge. May be negative if self.shape.rank is statically known.






	返回

	A copy of this tensor, with the specified dimensions merged into a
single dimension.  The shape of the returned tensor will be
self.shape[:outer_axis] + [N] + self.shape[inner_axis + 1:], where N
is the total number of slices in the merged dimensions.










	
nested_row_lengths(name=None)

	Returns a tuple containing the row_lengths for all ragged dimensions.

rt.nested_row_lengths() is a tuple containing the row_lengths tensors
for all ragged dimensions in rt, ordered from outermost to innermost.


	参数

	name – A name prefix for the returned tensors (optional).



	返回

	A tuple of 1-D integer Tensors.  The length of the tuple is equal to
self.ragged_rank.










	
nested_row_splits

	A tuple containing the row_splits for all ragged dimensions.

rt.nested_row_splits is a tuple containing the row_splits tensors for
all ragged dimensions in rt, ordered from outermost to innermost.  In
particular, rt.nested_row_splits = (rt.row_splits,) + value_splits where:



	value_splits = () if rt.values is a Tensor.


	value_splits = rt.values.nested_row_splits otherwise.








	返回

	A tuple of 1-D integer `Tensor`s.





#### Example:

>>> rt = tf.ragged.constant(
...     [[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]])
>>> for i, splits in enumerate(rt.nested_row_splits):
...   print('Splits for dimension %d: %s' % (i+1, splits.numpy()))
Splits for dimension 1: [0 3]
Splits for dimension 2: [0 3 3 5]
Splits for dimension 3: [0 4 4 7 8 8]










	
nested_value_rowids(name=None)

	Returns a tuple containing the value_rowids for all ragged dimensions.

rt.nested_value_rowids is a tuple containing the value_rowids tensors
for
all ragged dimensions in rt, ordered from outermost to innermost.  In
particular, rt.nested_value_rowids = (rt.value_rowids(),) + value_ids
where:



	value_ids = () if rt.values is a Tensor.


	value_ids = rt.values.nested_value_rowids otherwise.








	参数

	name – A name prefix for the returned tensors (optional).



	返回

	A tuple of 1-D integer `Tensor`s.





#### Example:

>>> rt = tf.ragged.constant(
...     [[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]])
>>> for i, ids in enumerate(rt.nested_value_rowids()):
...   print('row ids for dimension %d: %s' % (i+1, ids.numpy()))
row ids for dimension 1: [0 0 0]
row ids for dimension 2: [0 0 0 2 2]
row ids for dimension 3: [0 0 0 0 2 2 2 3]










	
nrows(out_type=None, name=None)

	Returns the number of rows in this ragged tensor.

I.e., the size of the outermost dimension of the tensor.


	参数

	
	out_type – dtype for the returned tensor.  Defaults to
self.row_splits.dtype.


	name – A name prefix for the returned tensor (optional).






	返回

	A scalar Tensor with dtype out_type.





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.nrows())  # rt has 5 rows.
tf.Tensor(5, shape=(), dtype=int64)










	
numpy()

	Returns a numpy array with the values for this RaggedTensor.

Requires that this RaggedTensor was constructed in eager execution mode.

Ragged dimensions are encoded using numpy arrays with dtype=object and
rank=1, where each element is a single row.

#### Examples

In the following example, the value returned by RaggedTensor.numpy()
contains three numpy array objects: one for each row (with rank=1 and
dtype=int64), and one to combine them (with rank=1 and dtype=object):

>>> tf.ragged.constant([[1, 2, 3], [4, 5]], dtype=tf.int64).numpy()
array([array([1, 2, 3]), array([4, 5])], dtype=object)





Uniform dimensions are encoded using multidimensional numpy array`s.  In
the following example, the value returned by `RaggedTensor.numpy() contains
a single numpy array object, with rank=2 and dtype=int64:

>>> tf.ragged.constant([[1, 2, 3], [4, 5, 6]], dtype=tf.int64).numpy()
array([[1, 2, 3], [4, 5, 6]])






	返回

	A numpy array.










	
ragged_rank

	The number of ragged dimensions in this ragged tensor.


	返回

	A Python int indicating the number of ragged dimensions in this ragged
tensor.  The outermost dimension is not considered ragged.










	
row_lengths(axis=1, name=None)

	Returns the lengths of the rows in this ragged tensor.

rt.row_lengths()[i] indicates the number of values in the
i`th row of `rt.


	参数

	
	axis – An integer constant indicating the axis whose row lengths should be
returned.


	name – A name prefix for the returned tensor (optional).






	返回

	axis]`.



	返回类型

	A potentially ragged integer Tensor with shape `self.shape[



	Raises

	ValueError – If axis is out of bounds.





#### Example:

>>> rt = tf.ragged.constant(
...     [[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []])
>>> print(rt.row_lengths())  # lengths of rows in rt
tf.Tensor([2 0 2 1 0], shape=(5,), dtype=int64)
>>> print(rt.row_lengths(axis=2))  # lengths of axis=2 rows.
<tf.RaggedTensor [[3, 1], [], [2, 1], [1], []]>










	
row_limits(name=None)

	Returns the limit indices for rows in this ragged tensor.

These indices specify where the values for each row end in
self.values.  rt.row_limits(self) is equal to rt.row_splits[:-1].


	参数

	name – A name prefix for the returned tensor (optional).



	返回

	A 1-D integer Tensor with shape [nrows].
The returned tensor is nonnegative, and is sorted in ascending order.





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)
>>> print(rt.row_limits())  # indices of row limits in rt.values
tf.Tensor([4 4 7 8 8], shape=(5,), dtype=int64)










	
row_splits

	The row-split indices for this ragged tensor’s values.

rt.row_splits specifies where the values for each row begin and end in
rt.values.  In particular, the values for row rt[i] are stored in
the slice rt.values[rt.row_splits[i]:rt.row_splits[i+1]].


	返回

	A 1-D integer Tensor with shape [self.nrows+1].
The returned tensor is non-empty, and is sorted in ascending order.
self.row_splits[0] is zero, and self.row_splits[-1] is equal to
self.values.shape[0].





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.row_splits)  # indices of row splits in rt.values
tf.Tensor([0 4 4 7 8 8], shape=(6,), dtype=int64)










	
row_starts(name=None)

	Returns the start indices for rows in this ragged tensor.

These indices specify where the values for each row begin in
self.values.  rt.row_starts() is equal to rt.row_splits[:-1].


	参数

	name – A name prefix for the returned tensor (optional).



	返回

	A 1-D integer Tensor with shape [nrows].
The returned tensor is nonnegative, and is sorted in ascending order.





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)
>>> print(rt.row_starts())  # indices of row starts in rt.values
tf.Tensor([0 4 4 7 8], shape=(5,), dtype=int64)










	
shape

	The statically known shape of this ragged tensor.


	返回

	A TensorShape containing the statically known shape of this ragged
tensor.  Ragged dimensions have a size of None.





Examples:

>>> tf.ragged.constant([[0], [1, 2]]).shape
TensorShape([2, None])





>>> tf.ragged.constant([[[0, 1]], [[1, 2], [3, 4]]], ragged_rank=1).shape
TensorShape([2, None, 2])










	
to_list()

	Returns a nested Python list with the values for this RaggedTensor.

Requires that rt was constructed in eager execution mode.


	返回

	A nested Python list.










	
to_sparse(name=None)

	Converts this RaggedTensor into a tf.SparseTensor.

Example:

>>> rt = tf.ragged.constant([[1, 2, 3], [4], [], [5, 6]])
>>> print(rt.to_sparse())
SparseTensor(indices=tf.Tensor(
                 [[0 0] [0 1] [0 2] [1 0] [3 0] [3 1]],
                 shape=(6, 2), dtype=int64),
             values=tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32),
             dense_shape=tf.Tensor([4 3], shape=(2,), dtype=int64))






	参数

	name – A name prefix for the returned tensors (optional).



	返回

	A SparseTensor with the same values as self.










	
to_tensor(default_value=None, name=None, shape=None)

	Converts this RaggedTensor into a tf.Tensor.

If shape is specified, then the result is padded and/or truncated to
the specified shape.

Examples:

>>> rt = tf.ragged.constant([[9, 8, 7], [], [6, 5], [4]])
>>> print(rt.to_tensor())
tf.Tensor(
    [[9 8 7] [0 0 0] [6 5 0] [4 0 0]], shape=(4, 3), dtype=int32)
>>> print(rt.to_tensor(shape=[5, 2]))
tf.Tensor(
    [[9 8] [0 0] [6 5] [4 0] [0 0]], shape=(5, 2), dtype=int32)






	参数

	
	default_value – Value to set for indices not specified in self. Defaults
to zero.  default_value must be broadcastable to
self.shape[self.ragged_rank + 1:].


	name – A name prefix for the returned tensors (optional).


	shape – The shape of the resulting dense tensor.  In particular,
result.shape[i] is shape[i] (if shape[i] is not None), or
self.bounding_shape(i) (otherwise).`shape.rank` must be None or
equal to self.rank.






	返回

	A Tensor with shape ragged.bounding_shape(self) and the
values specified by the non-empty values in self.  Empty values are
assigned default_value.










	
uniform_row_length

	The length of each row in this ragged tensor, or None if rows are ragged.

>>> rt1 = tf.ragged.constant([[1, 2, 3], [4], [5, 6], [7, 8, 9, 10]])
>>> print(rt1.uniform_row_length)  # rows are ragged.
None





>>> rt2 = tf.RaggedTensor.from_uniform_row_length(
...     values=rt1, uniform_row_length=2)
>>> print(rt2)
<tf.RaggedTensor [[[1, 2, 3], [4]], [[5, 6], [7, 8, 9, 10]]]>
>>> print(rt2.uniform_row_length)  # rows are not ragged (all have size 2).
tf.Tensor(2, shape=(), dtype=int64)





A RaggedTensor’s rows are only considered to be uniform (i.e. non-ragged)
if it can be determined statically (at graph construction time) that the
rows all have the same length.


	返回

	A scalar integer Tensor, specifying the length of every row in this
ragged tensor (for ragged tensors whose rows are uniform); or None
(for ragged tensors whose rows are ragged).










	
value_rowids(name=None)

	Returns the row indices for the values in this ragged tensor.

rt.value_rowids() corresponds one-to-one with the outermost dimension of
rt.values, and specifies the row containing each value.  In particular,
the row rt[row] consists of the values rt.values[j] where
rt.value_rowids()[j] == row.


	参数

	name – A name prefix for the returned tensor (optional).



	返回

	1]`.
The returned tensor is nonnegative, and is sorted in ascending order.



	返回类型

	A 1-D integer Tensor with shape `self.values.shape[





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)
>>> print(rt.value_rowids())  # corresponds 1:1 with rt.values
tf.Tensor([0 0 0 0 2 2 2 3], shape=(8,), dtype=int64)










	
values

	The concatenated rows for this ragged tensor.

rt.values is a potentially ragged tensor formed by flattening the two
outermost dimensions of rt into a single dimension.

rt.values.shape = [nvals] + rt.shape[2:] (where nvals is the
number of items in the outer two dimensions of rt).

rt.ragged_rank = self.ragged_rank - 1


	返回

	A potentially ragged tensor.





#### Example:

>>> rt = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print(rt.values)
tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)










	
with_flat_values(new_values)

	Returns a copy of self with flat_values replaced by new_value.

Preserves cached row-partitioning tensors such as self.cached_nrows and
self.cached_value_rowids if they have values.


	参数

	
	new_values – Potentially ragged tensor that should replace


	Must have rank > 0, and must have the same (self.flat_values.) – 


	of rows as self.flat_values. (number) – 






	返回

	A RaggedTensor.
result.rank = self.ragged_rank + new_values.rank.
result.ragged_rank = self.ragged_rank + new_values.ragged_rank.










	
with_row_splits_dtype(dtype)

	Returns a copy of this RaggedTensor with the given row_splits dtype.

For RaggedTensors with multiple ragged dimensions, the row_splits for all
nested RaggedTensor objects are cast to the given dtype.


	参数

	dtype – The dtype for row_splits.  One of tf.int32 or tf.int64.



	返回

	A copy of this RaggedTensor, with the row_splits cast to the given
type.










	
with_values(new_values)

	Returns a copy of self with values replaced by new_value.

Preserves cached row-partitioning tensors such as self.cached_nrows and
self.cached_value_rowids if they have values.


	参数

	new_values – Potentially ragged tensor to use as the values for the
returned RaggedTensor.  Must have rank > 0, and must have the same
number of rows as self.values.



	返回

	A RaggedTensor.  result.rank = 1 + new_values.rank.
result.ragged_rank = 1 + new_values.ragged_rank














	
class tensorflow.RaggedTensorSpec(shape=None, dtype=tf.float32, ragged_rank=None, row_splits_dtype=tf.int64)

	基类：tensorflow.python.framework.type_spec.BatchableTypeSpec

Type specification for a tf.RaggedTensor.

Constructs a type specification for a tf.RaggedTensor.


	参数

	
	shape – The shape of the RaggedTensor, or None to allow any shape.  If
a shape is specified, then all ragged dimensions must have size None.


	dtype – tf.DType of values in the RaggedTensor.


	ragged_rank – Python integer, the ragged rank of the RaggedTensor
to be described.  Defaults to shape.ndims - 1.


	row_splits_dtype – dtype for the RaggedTensor’s row_splits tensor.
One of tf.int32 or tf.int64.









	
classmethod from_value(value)

	




	
value_type

	The Python type for values that are compatible with this TypeSpec.










	
class tensorflow.RegisterGradient(op_type)

	基类：object

A decorator for registering the gradient function for an op type.

This decorator is only used when defining a new op type. For an op
with m inputs and n outputs, the gradient function is a function
that takes the original Operation and n Tensor objects
(representing the gradients with respect to each output of the op),
and returns m Tensor objects (representing the partial gradients
with respect to each input of the op).

For example, assuming that operations of type “Sub” take two
inputs x and y, and return a single output x - y, the
following gradient function would be registered:

```python
@tf.RegisterGradient(“Sub”)
def _sub_grad(unused_op, grad):


return grad, tf.negative(grad)




```

The decorator argument op_type is the string type of an
operation. This corresponds to the OpDef.name field for the proto
that defines the operation.

Creates a new decorator with op_type as the Operation type.


	参数

	op_type – The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.



	Raises

	TypeError – If op_type is not string.










	
class tensorflow.SparseTensor(indices, values, dense_shape)

	基类：tensorflow.python.framework.tensor_like._TensorLike, tensorflow.python.framework.composite_tensor.CompositeTensor

Represents a sparse tensor.

TensorFlow represents a sparse tensor as three separate dense tensors:
indices, values, and dense_shape.  In Python, the three tensors are
collected into a SparseTensor class for ease of use.  If you have separate
indices, values, and dense_shape tensors, wrap them in a SparseTensor
object before passing to the ops below.

Concretely, the sparse tensor SparseTensor(indices, values, dense_shape)
comprises the following components, where N and ndims are the number
of values and number of dimensions in the SparseTensor, respectively:


	indices: A 2-D int64 tensor of shape [N, ndims], which specifies the
indices of the elements in the sparse tensor that contain nonzero values
(elements are zero-indexed). For example, indices=[[1,3], [2,4]] specifies
that the elements with indexes of [1,3] and [2,4] have nonzero values.


	values: A 1-D tensor of any type and shape [N], which supplies the
values for each element in indices. For example, given indices=[[1,3],
[2,4]], the parameter values=[18, 3.6] specifies that element [1,3] of
the sparse tensor has a value of 18, and element [2,4] of the tensor has a
value of 3.6.


	dense_shape: A 1-D int64 tensor of shape [ndims], which specifies the
dense_shape of the sparse tensor. Takes a list indicating the number of
elements in each dimension. For example, dense_shape=[3,6] specifies a
two-dimensional 3x6 tensor, dense_shape=[2,3,4] specifies a
three-dimensional 2x3x4 tensor, and dense_shape=[9] specifies a
one-dimensional tensor with 9 elements.




The corresponding dense tensor satisfies:

`python
dense.shape = dense_shape
dense[tuple(indices[i])] = values[i]
`

By convention, indices should be sorted in row-major order (or equivalently
lexicographic order on the tuples indices[i]). This is not enforced when
SparseTensor objects are constructed, but most ops assume correct ordering.
If the ordering of sparse tensor st is wrong, a fixed version can be
obtained by calling tf.sparse.reorder(st).

Example: The sparse tensor

`python
SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4])
`

represents the dense tensor

```python
[[1, 0, 0, 0]


[0, 0, 2, 0]
[0, 0, 0, 0]]




```

Creates a SparseTensor.


	参数

	
	indices – A 2-D int64 tensor of shape [N, ndims].


	values – A 1-D tensor of any type and shape [N].


	dense_shape – A 1-D int64 tensor of shape [ndims].






	Raises

	ValueError – When building an eager SparseTensor if dense_shape is
unknown or contains unknown elements (None or -1).






	
consumers()

	




	
dense_shape

	A 1-D Tensor of int64 representing the shape of the dense tensor.






	
dtype

	The DType of elements in this tensor.






	
eval(feed_dict=None, session=None)

	Evaluates this sparse tensor in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

N.B. Before invoking SparseTensor.eval(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.


	参数

	
	feed_dict – A dictionary that maps Tensor objects to feed values. See
tf.Session.run for a description of the valid feed values.


	session – (Optional.) The Session to be used to evaluate this sparse
tensor. If none, the default session will be used.






	返回

	A SparseTensorValue object.










	
classmethod from_value(sparse_tensor_value)

	




	
get_shape()

	Get the TensorShape representing the shape of the dense tensor.


	返回

	A TensorShape object.










	
graph

	The Graph that contains the index, value, and dense_shape tensors.






	
indices

	The indices of non-zero values in the represented dense tensor.


	返回

	
	A 2-D Tensor of int64 with dense_shape [N, ndims], where N is the

	number of non-zero values in the tensor, and ndims is the rank.
















	
op

	The Operation that produces values as an output.






	
shape

	Get the TensorShape representing the shape of the dense tensor.


	返回

	A TensorShape object.










	
values

	The non-zero values in the represented dense tensor.


	返回

	A 1-D Tensor of any data type.














	
class tensorflow.SparseTensorSpec(shape=None, dtype=tf.float32)

	基类：tensorflow.python.framework.type_spec.BatchableTypeSpec

Type specification for a tf.SparseTensor.

Constructs a type specification for a tf.SparseTensor.


	参数

	
	shape – The dense shape of the SparseTensor, or None to allow
any dense shape.


	dtype – tf.DType of values in the SparseTensor.









	
dtype

	The tf.dtypes.DType specified by this type for the SparseTensor.






	
classmethod from_value(value)

	




	
shape

	The tf.TensorShape specified by this type for the SparseTensor.






	
value_type

	








	
class tensorflow.Tensor(op, value_index, dtype)

	基类：tensorflow.python.framework.tensor_like._TensorLike

A tensor represents a rectangular array of data.

When writing a TensorFlow program, the main object you manipulate and pass
around is the tf.Tensor. A tf.Tensor object represents a rectangular array
of arbitrary dimension, filled with data of a specific data type.

A tf.Tensor has the following properties:


	a data type (float32, int32, or string, for example)


	a shape




Each element in the Tensor has the same data type, and the data type is always
known.

In eager execution, which is the default mode in TensorFlow, results are
calculated immediately.

>>> # Compute some values using a Tensor
>>> c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
>>> d = tf.constant([[1.0, 1.0], [0.0, 1.0]])
>>> e = tf.matmul(c, d)
>>> print(e)
tf.Tensor(
[[1. 3.]
 [3. 7.]], shape=(2, 2), dtype=float32)





Note that during eager execution, you may discover your Tensors are actually
of type EagerTensor.  This is an internal detail, but it does give you
access to a useful function, numpy:

>>> type(e)
<class '...ops.EagerTensor'>
>>> print(e.numpy())
  [[1. 3.]
   [3. 7.]]





TensorFlow can define computations without immediately executing them, most
commonly inside `tf.function`s, as well as in (legacy) Graph mode. In those
cases, the shape (that is, the rank of the Tensor and the size of
each dimension) might be only partially known.

Most operations produce tensors of fully-known shapes if the shapes of their
inputs are also fully known, but in some cases it’s only possible to find the
shape of a tensor at execution time.

There are specialized tensors; for these, see tf.Variable, tf.constant,
tf.placeholder, tf.SparseTensor, and tf.RaggedTensor.

For more on Tensors, see the [guide](https://tensorflow.org/guide/tensor`).

Creates a new Tensor.


	参数

	
	op – An Operation. Operation that computes this tensor.


	value_index – An int. Index of the operation’s endpoint that produces
this tensor.


	dtype – A DType. Type of elements stored in this tensor.






	Raises

	TypeError – If the op is not an Operation.






	
OVERLOADABLE_OPERATORS = {'__abs__', '__add__', '__and__', '__div__', '__eq__', '__floordiv__', '__ge__', '__getitem__', '__gt__', '__invert__', '__le__', '__lt__', '__matmul__', '__mod__', '__mul__', '__ne__', '__neg__', '__or__', '__pow__', '__radd__', '__rand__', '__rdiv__', '__rfloordiv__', '__rmatmul__', '__rmod__', '__rmul__', '__ror__', '__rpow__', '__rsub__', '__rtruediv__', '__rxor__', '__sub__', '__truediv__', '__xor__'}

	




	
consumers()

	Returns a list of `Operation`s that consume this tensor.


	返回

	A list of `Operation`s.










	
device

	The name of the device on which this tensor will be produced, or None.






	
dtype

	The DType of elements in this tensor.






	
eval(feed_dict=None, session=None)

	Evaluates this tensor in a Session.

Note: If you are not using compat.v1 libraries, you should not need this,
(or feed_dict or Session).  In eager execution (or within tf.function)
you do not need to call eval.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

N.B. Before invoking Tensor.eval(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.


	参数

	
	feed_dict – A dictionary that maps Tensor objects to feed values. See
tf.Session.run for a description of the valid feed values.


	session – (Optional.) The Session to be used to evaluate this tensor. If
none, the default session will be used.






	返回

	A numpy array corresponding to the value of this tensor.










	
experimental_ref()

	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use ref() instead.






	
get_shape()

	Alias of tf.Tensor.shape.






	
graph

	The Graph that contains this tensor.






	
name

	The string name of this tensor.






	
op

	The Operation that produces this tensor as an output.






	
ref()

	Returns a hashable reference object to this Tensor.

The primary use case for this API is to put tensors in a set/dictionary.
We can’t put tensors in a set/dictionary as tensor.__hash__() is no longer
available starting Tensorflow 2.0.

The following will raise an exception starting 2.0

>>> x = tf.constant(5)
>>> y = tf.constant(10)
>>> z = tf.constant(10)
>>> tensor_set = {x, y, z}
Traceback (most recent call last):
  ...
TypeError: Tensor is unhashable. Instead, use tensor.ref() as the key.
>>> tensor_dict = {x: 'five', y: 'ten'}
Traceback (most recent call last):
  ...
TypeError: Tensor is unhashable. Instead, use tensor.ref() as the key.





Instead, we can use tensor.ref().

>>> tensor_set = {x.ref(), y.ref(), z.ref()}
>>> x.ref() in tensor_set
True
>>> tensor_dict = {x.ref(): 'five', y.ref(): 'ten', z.ref(): 'ten'}
>>> tensor_dict[y.ref()]
'ten'





Also, the reference object provides .deref() function that returns the
original Tensor.

>>> x = tf.constant(5)
>>> x.ref().deref()
<tf.Tensor: shape=(), dtype=int32, numpy=5>










	
set_shape(shape)

	Updates the shape of this tensor.

This method can be called multiple times, and will merge the given
shape with the current shape of this tensor. It can be used to
provide additional information about the shape of this tensor that
cannot be inferred from the graph alone. For example, this can be used
to provide additional information about the shapes of images:

```python
_, image_data = tf.compat.v1.TFRecordReader(…).read(…)
image = tf.image.decode_png(image_data, channels=3)

# The height and width dimensions of image are data dependent, and
# cannot be computed without executing the op.
print(image.shape)
==> TensorShape([Dimension(None), Dimension(None), Dimension(3)])

# We know that each image in this dataset is 28 x 28 pixels.
image.set_shape([28, 28, 3])
print(image.shape)
==> TensorShape([Dimension(28), Dimension(28), Dimension(3)])
```

NOTE: This shape is not enforced at runtime. Setting incorrect shapes can
result in inconsistencies between the statically-known graph and the runtime
value of tensors. For runtime validation of the shape, use tf.ensure_shape
instead.


	参数

	shape – A TensorShape representing the shape of this tensor, a
TensorShapeProto, a list, a tuple, or None.



	Raises

	ValueError – If shape is not compatible with the current shape of
this tensor.










	
shape

	Returns the TensorShape that represents the shape of this tensor.

The shape is computed using shape inference functions that are
registered in the Op for each Operation.  See
tf.TensorShape
for more details of what a shape represents.

The inferred shape of a tensor is used to provide shape
information without having to execute the underlying kernel. This
can be used for debugging and providing early error messages. For
example:

```python
>>> c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
>>> print(c.shape) # will be TensorShape([2, 3])
(2, 3)

>>> d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])
>>> print(d.shape)
(4, 2)





# Raises a ValueError, because c and d do not have compatible
# inner dimensions.
>>> e = tf.matmul(c, d)
Traceback (most recent call last):


…




tensorflow.python.framework.errors_impl.InvalidArgumentError: Matrix
size-incompatible: In[0]: [2,3], In[1]: [4,2] [Op:MatMul] name: MatMul/

# This works because we have compatible shapes.
>>> f = tf.matmul(c, d, transpose_a=True, transpose_b=True)
>>> print(f.shape)
(3, 4)

```

In some cases, the inferred shape may have unknown dimensions. If
the caller has additional information about the values of these
dimensions, Tensor.set_shape() can be used to augment the
inferred shape.


	返回

	A tf.TensorShape representing the shape of this tensor.










	
value_index

	The index of this tensor in the outputs of its Operation.










	
class tensorflow.TensorArray(dtype, size=None, dynamic_size=None, clear_after_read=None, tensor_array_name=None, handle=None, flow=None, infer_shape=True, element_shape=None, colocate_with_first_write_call=True, name=None)

	基类：object

Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays.

This class is meant to be used with dynamic iteration primitives such as
while_loop and map_fn.  It supports gradient back-propagation via special
“flow” control flow dependencies.

Example 1: Plain reading and writing.

>>> ta = tf.TensorArray(tf.float32, size=0, dynamic_size=True, clear_after_read=False)
>>> ta = ta.write(0, 10)
>>> ta = ta.write(1, 20)
>>> ta = ta.write(2, 30)
>>>
>>> ta.read(0)
<tf.Tensor: shape=(), dtype=float32, numpy=10.0>
>>> ta.read(1)
<tf.Tensor: shape=(), dtype=float32, numpy=20.0>
>>> ta.read(2)
<tf.Tensor: shape=(), dtype=float32, numpy=30.0>
>>> ta.stack()
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([10., 20., 30.],
dtype=float32)>





Example 2: Fibonacci sequence algorithm that writes in a loop then returns.

>>> @tf.function
... def fibonacci(n):
...   ta = tf.TensorArray(tf.float32, size=0, dynamic_size=True)
...   ta = ta.unstack([0., 1.])
...
...   for i in range(2, n):
...     ta = ta.write(i, ta.read(i - 1) + ta.read(i - 2))
...
...   return ta.stack()
>>>
>>> fibonacci(7)
<tf.Tensor: shape=(7,), dtype=float32,
numpy=array([0., 1., 1., 2., 3., 5., 8.], dtype=float32)>





Example 3: A simple loop interacting with a tf.Variable.

>>> v = tf.Variable(1)
>>>
>>> @tf.function
... def f(x):
...   ta = tf.TensorArray(tf.int32, size=0, dynamic_size=True)
...
...   for i in tf.range(x):
...     v.assign_add(i)
...     ta = ta.write(i, v)
...
...   return ta.stack()
>>>
>>> f(5)
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 1,  2,  4,  7, 11],
dtype=int32)>





Construct a new TensorArray or wrap an existing TensorArray handle.

A note about the parameter name:

The name of the TensorArray (even if passed in) is uniquified: each time
a new TensorArray is created at runtime it is assigned its own name for
the duration of the run.  This avoids name collisions if a TensorArray
is created within a while_loop.


	参数

	
	dtype – (required) data type of the TensorArray.


	size – (optional) int32 scalar Tensor: the size of the TensorArray.
Required if handle is not provided.


	dynamic_size – (optional) Python bool: If true, writes to the TensorArray
can grow the TensorArray past its initial size.  Default: False.


	clear_after_read – Boolean (optional, default: True).  If True, clear
TensorArray values after reading them.  This disables read-many
semantics, but allows early release of memory.


	tensor_array_name – (optional) Python string: the name of the TensorArray.
This is used when creating the TensorArray handle.  If this value is
set, handle should be None.


	handle – (optional) A Tensor handle to an existing TensorArray.  If this
is set, tensor_array_name should be None. Only supported in graph mode.


	flow – (optional) A float Tensor scalar coming from an existing
TensorArray.flow. Only supported in graph mode.


	infer_shape – (optional, default: True) If True, shape inference
is enabled.  In this case, all elements must have the same shape.


	element_shape – (optional, default: None) A TensorShape object specifying
the shape constraints of each of the elements of the TensorArray.
Need not be fully defined.


	colocate_with_first_write_call – If True, the TensorArray will be
colocated on the same device as the Tensor used on its first write
(write operations include write, unstack, and split).  If False,
the TensorArray will be placed on the device determined by the
device context available during its initialization.


	name – A name for the operation (optional).






	Raises

	
	ValueError – if both handle and tensor_array_name are provided.


	TypeError – if handle is provided but is not a Tensor.









	
close(name=None)

	Close the current TensorArray.

NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
concat(name=None)

	Return the values in the TensorArray as a concatenated Tensor.

All of the values must have been written, their ranks must match, and
and their shapes must all match for all dimensions except the first.


	参数

	name – A name for the operation (optional).



	返回

	All the tensors in the TensorArray concatenated into one tensor.










	
dtype

	The data type of this TensorArray.






	
dynamic_size

	Python bool; if True the TensorArray can grow dynamically.






	
element_shape

	The tf.TensorShape of elements in this TensorArray.






	
flow

	The flow Tensor forcing ops leading to this TensorArray state.






	
gather(indices, name=None)

	Return selected values in the TensorArray as a packed Tensor.

All of selected values must have been written and their shapes
must all match.


	参数

	
	indices – A 1-D Tensor taking values in [0, max_value).  If
the TensorArray is not dynamic, max_value=size().


	name – A name for the operation (optional).






	返回

	The tensors in the TensorArray selected by indices, packed into one
tensor.










	
grad(source, flow=None, name=None)

	




	
handle

	The reference to the TensorArray.






	
identity()

	Returns a TensorArray with the same content and properties.


	返回

	A new TensorArray object with flow that ensures the control dependencies
from the contexts will become control dependencies for writes, reads, etc.
Use this object all for subsequent operations.










	
read(index, name=None)

	Read the value at location index in the TensorArray.


	参数

	
	index – 0-D.  int32 tensor with the index to read from.


	name – A name for the operation (optional).






	返回

	The tensor at index index.










	
scatter(indices, value, name=None)

	Scatter the values of a Tensor in specific indices of a TensorArray.



	Args:

	
	indices: A 1-D Tensor taking values in [0, max_value).  If

	the TensorArray is not dynamic, max_value=size().





value: (N+1)-D.  Tensor of type dtype.  The Tensor to unpack.
name: A name for the operation (optional).



	Returns:

	A new TensorArray object with flow that ensures the scatter occurs.
Use this object all for subsequent operations.



	Raises:

	ValueError: if the shape inference fails.








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
size(name=None)

	Return the size of the TensorArray.






	
split(value, lengths, name=None)

	Split the values of a Tensor into the TensorArray.



	Args:

	value: (N+1)-D.  Tensor of type dtype.  The Tensor to split.
lengths: 1-D.  int32 vector with the lengths to use when splitting


value along its first dimension.




name: A name for the operation (optional).



	Returns:

	A new TensorArray object with flow that ensures the split occurs.
Use this object all for subsequent operations.



	Raises:

	ValueError: if the shape inference fails.








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
stack(name=None)

	Return the values in the TensorArray as a stacked Tensor.

All of the values must have been written and their shapes must all match.
If input shapes have rank-R, then output shape will have rank-(R+1).


	参数

	name – A name for the operation (optional).



	返回

	All the tensors in the TensorArray stacked into one tensor.










	
unstack(value, name=None)

	Unstack the values of a Tensor in the TensorArray.


If input value shapes have rank-R, then the output TensorArray will
contain elements whose shapes are rank-(R-1).


	Args:

	value: (N+1)-D.  Tensor of type dtype.  The Tensor to unstack.
name: A name for the operation (optional).



	Returns:

	A new TensorArray object with flow that ensures the unstack occurs.
Use this object all for subsequent operations.



	Raises:

	ValueError: if the shape inference fails.








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.






	
write(index, value, name=None)

	Write value into index index of the TensorArray.



	Args:

	index: 0-D.  int32 scalar with the index to write to.
value: N-D.  Tensor of type dtype.  The Tensor to write to this index.
name: A name for the operation (optional).



	Returns:

	A new TensorArray object with flow that ensures the write occurs.
Use this object all for subsequent operations.



	Raises:

	ValueError: if there are more writers than specified.








NOTE The output of this function should be used.  If it is not, a warning will be logged or an error may be raised.  To mark the output as used, call its .mark_used() method.










	
class tensorflow.TensorArraySpec(element_shape=None, dtype=tf.float32, dynamic_size=False, infer_shape=True)

	基类：tensorflow.python.framework.type_spec.TypeSpec

Type specification for a tf.TensorArray.

Constructs a type specification for a tf.TensorArray.


	参数

	
	element_shape – The shape of each element in the TensorArray.


	dtype – Data type of the TensorArray.


	dynamic_size – Whether the TensorArray can grow past its initial size.


	infer_shape – Whether shape inference is enabled.









	
static from_value(value)

	




	
is_compatible_with(other)

	Returns true if spec_or_value is compatible with this TypeSpec.






	
most_specific_compatible_type(other)

	Returns the most specific TypeSpec compatible with self and other.


	参数

	other – A TypeSpec.



	Raises

	ValueError – If there is no TypeSpec that is compatible with both self
and other.










	
value_type

	








	
class tensorflow.TensorShape(dims)

	基类：object

Represents the shape of a Tensor.

A TensorShape represents a possibly-partial shape specification for a
Tensor. It may be one of the following:


	Fully-known shape: has a known number of dimensions and a known size
for each dimension. e.g. TensorShape([16, 256])


	Partially-known shape: has a known number of dimensions, and an unknown
size for one or more dimension. e.g. TensorShape([None, 256])


	Unknown shape: has an unknown number of dimensions, and an unknown
size in all dimensions. e.g. TensorShape(None)




If a tensor is produced by an operation of type “Foo”, its shape
may be inferred if there is a registered shape function for
“Foo”. See [Shape
functions](https://tensorflow.org/extend/adding_an_op#shape_functions_in_c)
for details of shape functions and how to register them. Alternatively,
the shape may be set explicitly using tf.Tensor.set_shape.

Creates a new TensorShape with the given dimensions.


	参数

	dims – A list of Dimensions, or None if the shape is unspecified.



	Raises

	TypeError – If dims cannot be converted to a list of dimensions.






	
as_list()

	Returns a list of integers or None for each dimension.


	返回

	A list of integers or None for each dimension.



	Raises

	ValueError – If self is an unknown shape with an unknown rank.










	
as_proto()

	Returns this shape as a TensorShapeProto.






	
assert_has_rank(rank)

	Raises an exception if self is not compatible with the given rank.


	参数

	rank – An integer.



	Raises

	ValueError – If self does not represent a shape with the given rank.










	
assert_is_compatible_with(other)

	Raises exception if self and other do not represent the same shape.

This method can be used to assert that there exists a shape that both
self and other represent.


	参数

	other – Another TensorShape.



	Raises

	ValueError – If self and other do not represent the same shape.










	
assert_is_fully_defined()

	Raises an exception if self is not fully defined in every dimension.


	Raises

	ValueError – If self does not have a known value for every dimension.










	
assert_same_rank(other)

	Raises an exception if self and other do not have compatible ranks.


	参数

	other – Another TensorShape.



	Raises

	ValueError – If self and other do not represent shapes with the
same rank.










	
concatenate(other)

	Returns the concatenation of the dimension in self and other.

N.B. If either self or other is completely unknown,
concatenation will discard information about the other shape. In
future, we might support concatenation that preserves this
information for use with slicing.


	参数

	other – Another TensorShape.



	返回

	A TensorShape whose dimensions are the concatenation of the
dimensions in self and other.










	
dims

	Deprecated.  Returns list of dimensions for this shape.

Suggest TensorShape.as_list instead.


	返回

	A list containing `tf.compat.v1.Dimension`s, or None if the shape is
unspecified.










	
is_compatible_with(other)

	Returns True iff self is compatible with other.

Two possibly-partially-defined shapes are compatible if there
exists a fully-defined shape that both shapes can represent. Thus,
compatibility allows the shape inference code to reason about
partially-defined shapes. For example:


	TensorShape(None) is compatible with all shapes.


	TensorShape([None, None]) is compatible with all two-dimensional
shapes, such as TensorShape([32, 784]), and also TensorShape(None). It is
not compatible with, for example, TensorShape([None]) or
TensorShape([None, None, None]).


	TensorShape([32, None]) is compatible with all two-dimensional shapes
with size 32 in the 0th dimension, and also TensorShape([None, None])
and TensorShape(None). It is not compatible with, for example,
TensorShape([32]), TensorShape([32, None, 1]) or TensorShape([64, None]).


	TensorShape([32, 784]) is compatible with itself, and also
TensorShape([32, None]), TensorShape([None, 784]), TensorShape([None,
None]) and TensorShape(None). It is not compatible with, for example,
TensorShape([32, 1, 784]) or TensorShape([None]).




The compatibility relation is reflexive and symmetric, but not
transitive. For example, TensorShape([32, 784]) is compatible with
TensorShape(None), and TensorShape(None) is compatible with
TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible with
TensorShape([4, 4]).


	参数

	other – Another TensorShape.



	返回

	True iff self is compatible with other.










	
is_fully_defined()

	Returns True iff self is fully defined in every dimension.






	
merge_with(other)

	Returns a TensorShape combining the information in self and other.

The dimensions in self and other are merged elementwise,
according to the rules defined for Dimension.merge_with().


	参数

	other – Another TensorShape.



	返回

	A TensorShape containing the combined information of self and
other.



	Raises

	ValueError – If self and other are not compatible.










	
most_specific_compatible_shape(other)

	Returns the most specific TensorShape compatible with self and other.


	TensorShape([None, 1]) is the most specific TensorShape compatible with
both TensorShape([2, 1]) and TensorShape([5, 1]). Note that
TensorShape(None) is also compatible with above mentioned TensorShapes.


	TensorShape([1, 2, 3]) is the most specific TensorShape compatible with
both TensorShape([1, 2, 3]) and TensorShape([1, 2, 3]). There are more
less specific TensorShapes compatible with above mentioned TensorShapes,
e.g. TensorShape([1, 2, None]), TensorShape(None).





	参数

	other – Another TensorShape.



	返回

	A TensorShape which is the most specific compatible shape of self
and other.










	
ndims

	Deprecated accessor for rank.






	
num_elements()

	Returns the total number of elements, or none for incomplete shapes.






	
rank

	Returns the rank of this shape, or None if it is unspecified.






	
with_rank(rank)

	Returns a shape based on self with the given rank.

This method promotes a completely unknown shape to one with a
known rank.


	参数

	rank – An integer.



	返回

	A shape that is at least as specific as self with the given rank.



	Raises

	ValueError – If self does not represent a shape with the given rank.










	
with_rank_at_least(rank)

	Returns a shape based on self with at least the given rank.


	参数

	rank – An integer.



	返回

	A shape that is at least as specific as self with at least the given
rank.



	Raises

	ValueError – If self does not represent a shape with at least the given
rank.










	
with_rank_at_most(rank)

	Returns a shape based on self with at most the given rank.


	参数

	rank – An integer.



	返回

	A shape that is at least as specific as self with at most the given
rank.



	Raises

	ValueError – If self does not represent a shape with at most the given
rank.














	
class tensorflow.TensorSpec(shape, dtype=tf.float32, name=None)

	基类：tensorflow.python.framework.tensor_spec.DenseSpec, tensorflow.python.framework.type_spec.BatchableTypeSpec

Describes a tf.Tensor.

Metadata for describing the tf.Tensor objects accepted or returned
by some TensorFlow APIs.

Creates a TensorSpec.


	参数

	
	shape – Value convertible to tf.TensorShape. The shape of the tensor.


	dtype – Value convertible to tf.DType. The type of the tensor values.


	name – Optional name for the Tensor.






	Raises

	TypeError – If shape is not convertible to a tf.TensorShape, or dtype is
not convertible to a tf.DType.






	
classmethod from_tensor(tensor, name=None)

	




	
is_compatible_with(spec_or_tensor)

	Returns True if spec_or_tensor is compatible with this TensorSpec.

Two tensors are considered compatible if they have the same dtype
and their shapes are compatible (see tf.TensorShape.is_compatible_with).


	参数

	spec_or_tensor – A tf.TensorSpec or a tf.Tensor



	返回

	True if spec_or_tensor is compatible with self.










	
value_type

	








	
class tensorflow.TypeSpec

	基类：object

Specifies a TensorFlow value type.

A tf.TypeSpec provides metadata describing an object accepted or returned
by TensorFlow APIs.  Concrete subclasses, such as tf.TensorSpec and
tf.RaggedTensorSpec, are used to describe different value types.

For example, tf.function’s input_signature argument accepts a list
(or nested structure) of `TypeSpec`s.

Creating new subclasses of TypeSpec (outside of TensorFlow core) is not
currently supported.  In particular, we may make breaking changes to the
private methods and properties defined by this base class.


	
is_compatible_with(spec_or_value)

	Returns true if spec_or_value is compatible with this TypeSpec.






	
most_specific_compatible_type(other)

	Returns the most specific TypeSpec compatible with self and other.


	参数

	other – A TypeSpec.



	Raises

	ValueError – If there is no TypeSpec that is compatible with both self
and other.










	
value_type

	The Python type for values that are compatible with this TypeSpec.










	
class tensorflow.UnconnectedGradients

	基类：enum.Enum

Controls how gradient computation behaves when y does not depend on x.

The gradient of y with respect to x can be zero in two different ways: there
could be no differentiable path in the graph connecting x to y (and so we can
statically prove that the gradient is zero) or it could be that runtime values
of tensors in a particular execution lead to a gradient of zero (say, if a
relu unit happens to not be activated). To allow you to distinguish between
these two cases you can choose what value gets returned for the gradient when
there is no path in the graph from x to y:


	NONE: Indicates that [None] will be returned if there is no path from x
to y


	ZERO: Indicates that a zero tensor will be returned in the shape of x.





	
NONE = 'none'

	




	
ZERO = 'zero'

	








	
class tensorflow.Variable(initial_value=None, trainable=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, import_scope=None, constraint=None, synchronization=<VariableSynchronization.AUTO: 0>, aggregation=<VariableAggregation.NONE: 0>, shape=None)

	基类：tensorflow.python.training.tracking.base.Trackable

See the [variable guide](https://tensorflow.org/guide/variable).

A variable maintains shared, persistent state manipulated by a program.

The Variable() constructor requires an initial value for the variable, which
can be a Tensor of any type and shape. This initial value defines the type
and shape of the variable. After construction, the type and shape of the
variable are fixed. The value can be changed using one of the assign methods.

>>> v = tf.Variable(1.)
>>> v.assign(2.)
<tf.Variable ... shape=() dtype=float32, numpy=2.0>
>>> v.assign_add(0.5)
<tf.Variable ... shape=() dtype=float32, numpy=2.5>





The shape argument to Variable’s constructor allows you to construct a
variable with a less defined shape than its initial_value:

>>> v = tf.Variable(1., shape=tf.TensorShape(None))
>>> v.assign([[1.]])
<tf.Variable ... shape=<unknown> dtype=float32, numpy=array([[1.]], ...)>





Just like any Tensor, variables created with Variable() can be used as
inputs to operations. Additionally, all the operators overloaded for the
Tensor class are carried over to variables.

>>> w = tf.Variable([[1.], [2.]])
>>> x = tf.constant([[3., 4.]])
>>> tf.matmul(w, x)
<tf.Tensor:... shape=(2, 2), ... numpy=
  array([[3., 4.],
         [6., 8.]], dtype=float32)>
>>> tf.sigmoid(w + x)
<tf.Tensor:... shape=(2, 2), ...>





When building a machine learning model it is often convenient to distinguish
between variables holding trainable model parameters and other variables such
as a step variable used to count training steps. To make this easier, the
variable constructor supports a trainable=<bool>
parameter. tf.GradientTape watches trainable variables by default:

>>> with tf.GradientTape(persistent=True) as tape:
...   trainable = tf.Variable(1.)
...   non_trainable = tf.Variable(2., trainable=False)
...   x1 = trainable * 2.
...   x2 = non_trainable * 3.
>>> tape.gradient(x1, trainable)
<tf.Tensor:... shape=(), dtype=float32, numpy=2.0>
>>> assert tape.gradient(x2, non_trainable) is None  # Unwatched





Variables are automatically tracked when assigned to attributes of types
inheriting from tf.Module.

>>> m = tf.Module()
>>> m.v = tf.Variable([1.])
>>> m.trainable_variables
(<tf.Variable ... shape=(1,) ... numpy=array([1.], dtype=float32)>,)





This tracking then allows saving variable values to
[training checkpoints](https://www.tensorflow.org/guide/checkpoint), or to
[SavedModels](https://www.tensorflow.org/guide/saved_model) which include
serialized TensorFlow graphs.

Variables are often captured and manipulated by `tf.function`s. This works the
same way the un-decorated function would have:

>>> v = tf.Variable(0.)
>>> read_and_decrement = tf.function(lambda: v.assign_sub(0.1))
>>> read_and_decrement()
<tf.Tensor: shape=(), dtype=float32, numpy=-0.1>
>>> read_and_decrement()
<tf.Tensor: shape=(), dtype=float32, numpy=-0.2>





Variables created inside a tf.function must be owned outside the function
and be created only once:

>>> class M(tf.Module):
...   @tf.function
...   def __call__(self, x):
...     if not hasattr(self, "v"):  # Or set self.v to None in __init__
...       self.v = tf.Variable(x)
...     return self.v * x
>>> m = M()
>>> m(2.)
<tf.Tensor: shape=(), dtype=float32, numpy=4.0>
>>> m(3.)
<tf.Tensor: shape=(), dtype=float32, numpy=6.0>
>>> m.v
<tf.Variable ... shape=() dtype=float32, numpy=2.0>





See the tf.function documentation for details.

Creates a new variable with value initial_value. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (caching_device). They will be removed in a future version.
Instructions for updating:
A variable’s value can be manually cached by calling tf.Variable.read_value() under a tf.device scope. The caching_device argument does not work properly.


	参数

	
	initial_value – A Tensor, or Python object convertible to a Tensor,
which is the initial value for the Variable. The initial value must have
a shape specified unless validate_shape is set to False. Can also be a
callable with no argument that returns the initial value when called. In
that case, dtype must be specified. (Note that initializer functions
from init_ops.py must first be bound to a shape before being used here.)


	trainable – If True, GradientTapes automatically watch uses of this
variable. Defaults to True, unless synchronization is set to
ON_READ, in which case it defaults to False.


	validate_shape – If False, allows the variable to be initialized with a
value of unknown shape. If True, the default, the shape of
initial_value must be known.


	caching_device – Optional device string describing where the Variable
should be cached for reading.  Defaults to the Variable’s device. If not
None, caches on another device.  Typical use is to cache on the device
where the Ops using the Variable reside, to deduplicate copying through
Switch and other conditional statements.


	name – Optional name for the variable. Defaults to ‘Variable’ and gets
uniquified automatically.


	variable_def – VariableDef protocol buffer. If not None, recreates the
Variable object with its contents, referencing the variable’s nodes in
the graph, which must already exist. The graph is not changed.
variable_def and the other arguments are mutually exclusive.


	dtype – If set, initial_value will be converted to the given type. If
None, either the datatype will be kept (if initial_value is a
Tensor), or convert_to_tensor will decide.


	import_scope – Optional string. Name scope to add to the Variable. Only
used when initializing from protocol buffer.


	constraint – An optional projection function to be applied to the variable
after being updated by an Optimizer (e.g. used to implement norm
constraints or value constraints for layer weights). The function must
take as input the unprojected Tensor representing the value of the
variable and return the Tensor for the projected value (which must have
the same shape). Constraints are not safe to use when doing asynchronous
distributed training.


	synchronization – Indicates when a distributed a variable will be
aggregated. Accepted values are constants defined in the class
tf.VariableSynchronization. By default the synchronization is set to
AUTO and the current DistributionStrategy chooses when to
synchronize.


	aggregation – Indicates how a distributed variable will be aggregated.
Accepted values are constants defined in the class
tf.VariableAggregation.


	shape – (optional) The shape of this variable. If None, the shape of
initial_value will be used. When setting this argument to
tf.TensorShape(None) (representing an unspecified shape), the variable
can be assigned with values of different shapes.






	Raises

	
	ValueError – If both variable_def and initial_value are specified.


	ValueError – If the initial value is not specified, or does not have a
shape and validate_shape is True.









	
class SaveSliceInfo(full_name=None, full_shape=None, var_offset=None, var_shape=None, save_slice_info_def=None, import_scope=None)

	基类：object

Information on how to save this Variable as a slice.

Provides internal support for saving variables as slices of a larger
variable.  This API is not public and is subject to change.

Available properties:


	full_name


	full_shape


	var_offset


	var_shape




Create a SaveSliceInfo.


	参数

	
	full_name – Name of the full variable of which this Variable is a
slice.


	full_shape – Shape of the full variable, as a list of int.


	var_offset – Offset of this Variable into the full variable, as a list
of int.


	var_shape – Shape of this Variable, as a list of int.


	save_slice_info_def – SaveSliceInfoDef protocol buffer. If not None,
recreates the SaveSliceInfo object its contents. save_slice_info_def
and other arguments are mutually exclusive.


	import_scope – Optional string. Name scope to add. Only used when
initializing from protocol buffer.









	
spec

	Computes the spec string used for saving.






	
to_proto(export_scope=None)

	Returns a SaveSliceInfoDef() proto.


	参数

	export_scope – Optional string. Name scope to remove.



	返回

	A SaveSliceInfoDef protocol buffer, or None if the Variable is not
in the specified name scope.














	
aggregation

	




	
assign(value, use_locking=False, name=None, read_value=True)

	Assigns a new value to the variable.

This is essentially a shortcut for assign(self, value).


	参数

	
	value – A Tensor. The new value for this variable.


	use_locking – If True, use locking during the assignment.


	name – The name of the operation to be created


	read_value – if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.






	返回

	The updated variable. If read_value is false, instead returns None in
Eager mode and the assign op in graph mode.










	
assign_add(delta, use_locking=False, name=None, read_value=True)

	Adds a value to this variable.


This is essentially a shortcut for assign_add(self, delta).





	参数

	
	delta – A Tensor. The value to add to this variable.


	use_locking – If True, use locking during the operation.


	name – The name of the operation to be created


	read_value – if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.






	返回

	The updated variable. If read_value is false, instead returns None in
Eager mode and the assign op in graph mode.










	
assign_sub(delta, use_locking=False, name=None, read_value=True)

	Subtracts a value from this variable.

This is essentially a shortcut for assign_sub(self, delta).


	参数

	
	delta – A Tensor. The value to subtract from this variable.


	use_locking – If True, use locking during the operation.


	name – The name of the operation to be created


	read_value – if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.






	返回

	The updated variable. If read_value is false, instead returns None in
Eager mode and the assign op in graph mode.










	
batch_scatter_update(sparse_delta, use_locking=False, name=None)

	Assigns tf.IndexedSlices to this variable batch-wise.

Analogous to batch_gather. This assumes that this variable and the
sparse_delta IndexedSlices have a series of leading dimensions that are the
same for all of them, and the updates are performed on the last dimension of
indices. In other words, the dimensions should be the following:

num_prefix_dims = sparse_delta.indices.ndims - 1
batch_dim = num_prefix_dims + 1
`sparse_delta.updates.shape = sparse_delta.indices.shape + var.shape[


batch_dim:]`




where

sparse_delta.updates.shape[:num_prefix_dims]
== sparse_delta.indices.shape[:num_prefix_dims]
== var.shape[:num_prefix_dims]

And the operation performed can be expressed as:


	`var[i_1, …, i_n,

	
	sparse_delta.indices[i_1, …, i_n, j]] = sparse_delta.updates[

	i_1, …, i_n, j]`









When sparse_delta.indices is a 1D tensor, this operation is equivalent to
scatter_update.

To avoid this operation one can looping over the first ndims of the
variable and using scatter_update on the subtensors that result of slicing
the first dimension. This is a valid option for ndims = 1, but less
efficient than this implementation.


	参数

	
	sparse_delta – tf.IndexedSlices to be assigned to this variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
constraint

	Returns the constraint function associated with this variable.


	返回

	The constraint function that was passed to the variable constructor.
Can be None if no constraint was passed.










	
count_up_to(limit)

	Increments this variable until it reaches limit. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Prefer Dataset.range instead.

When that Op is run it tries to increment the variable by 1. If
incrementing the variable would bring it above limit then the Op raises
the exception OutOfRangeError.

If no error is raised, the Op outputs the value of the variable before
the increment.

This is essentially a shortcut for count_up_to(self, limit).


	参数

	limit – value at which incrementing the variable raises an error.



	返回

	A Tensor that will hold the variable value before the increment. If no
other Op modifies this variable, the values produced will all be
distinct.










	
device

	The device of this variable.






	
dtype

	The DType of this variable.






	
eval(session=None)

	In a session, computes and returns the value of this variable.

This is not a graph construction method, it does not add ops to the graph.

This convenience method requires a session where the graph
containing this variable has been launched. If no session is
passed, the default session is used.  See tf.compat.v1.Session for more
information on launching a graph and on sessions.

```python
v = tf.Variable([1, 2])
init = tf.compat.v1.global_variables_initializer()


	with tf.compat.v1.Session() as sess:

	sess.run(init)
# Usage passing the session explicitly.
print(v.eval(sess))
# Usage with the default session.  The ‘with’ block
# above makes ‘sess’ the default session.
print(v.eval())





```


	参数

	session – The session to use to evaluate this variable. If none, the
default session is used.



	返回

	A numpy ndarray with a copy of the value of this variable.










	
experimental_ref()

	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use ref() instead.






	
static from_proto(variable_def, import_scope=None)

	Returns a Variable object created from variable_def.






	
gather_nd(indices, name=None)

	Gather slices from params into a Tensor with shape specified by indices.

See tf.gather_nd for details.


	参数

	
	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as params.










	
get_shape()

	Alias of Variable.shape.






	
graph

	The Graph of this variable.






	
initial_value

	Returns the Tensor used as the initial value for the variable.

Note that this is different from initialized_value() which runs
the op that initializes the variable before returning its value.
This method returns the tensor that is used by the op that initializes
the variable.


	返回

	A Tensor.










	
initialized_value()

	Returns the value of the initialized variable. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.

You should use this instead of the variable itself to initialize another
variable with a value that depends on the value of this variable.

`python
# Initialize 'v' with a random tensor.
v = tf.Variable(tf.random.truncated_normal([10, 40]))
# Use `initialized_value` to guarantee that `v` has been
# initialized before its value is used to initialize `w`.
# The random values are picked only once.
w = tf.Variable(v.initialized_value() * 2.0)
`


	返回

	A Tensor holding the value of this variable after its initializer
has run.










	
initializer

	The initializer operation for this variable.






	
load(value, session=None)

	Load new value into this variable. (deprecated)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.

Writes new value to variable’s memory. Doesn’t add ops to the graph.

This convenience method requires a session where the graph
containing this variable has been launched. If no session is
passed, the default session is used.  See tf.compat.v1.Session for more
information on launching a graph and on sessions.

```python
v = tf.Variable([1, 2])
init = tf.compat.v1.global_variables_initializer()


	with tf.compat.v1.Session() as sess:

	sess.run(init)
# Usage passing the session explicitly.
v.load([2, 3], sess)
print(v.eval(sess)) # prints [2 3]
# Usage with the default session.  The ‘with’ block
# above makes ‘sess’ the default session.
v.load([3, 4], sess)
print(v.eval()) # prints [3 4]





```


	参数

	
	value – New variable value


	session – The session to use to evaluate this variable. If none, the
default session is used.






	Raises

	ValueError – Session is not passed and no default session










	
name

	The name of this variable.






	
op

	The Operation of this variable.






	
read_value()

	Returns the value of this variable, read in the current context.

Can be different from value() if it’s on another device, with control
dependencies, etc.


	返回

	A Tensor containing the value of the variable.










	
ref()

	Returns a hashable reference object to this Variable.

The primary use case for this API is to put variables in a set/dictionary.
We can’t put variables in a set/dictionary as variable.__hash__() is no
longer available starting Tensorflow 2.0.

The following will raise an exception starting 2.0

>>> x = tf.Variable(5)
>>> y = tf.Variable(10)
>>> z = tf.Variable(10)
>>> variable_set = {x, y, z}
Traceback (most recent call last):
  ...
TypeError: Variable is unhashable. Instead, use tensor.ref() as the key.
>>> variable_dict = {x: 'five', y: 'ten'}
Traceback (most recent call last):
  ...
TypeError: Variable is unhashable. Instead, use tensor.ref() as the key.





Instead, we can use variable.ref().

>>> variable_set = {x.ref(), y.ref(), z.ref()}
>>> x.ref() in variable_set
True
>>> variable_dict = {x.ref(): 'five', y.ref(): 'ten', z.ref(): 'ten'}
>>> variable_dict[y.ref()]
'ten'





Also, the reference object provides .deref() function that returns the
original Variable.

>>> x = tf.Variable(5)
>>> x.ref().deref()
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=5>










	
scatter_add(sparse_delta, use_locking=False, name=None)

	Adds tf.IndexedSlices to this variable.


	参数

	
	sparse_delta – tf.IndexedSlices to be added to this variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_div(sparse_delta, use_locking=False, name=None)

	Divide this variable by tf.IndexedSlices.


	参数

	
	sparse_delta – tf.IndexedSlices to divide this variable by.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_max(sparse_delta, use_locking=False, name=None)

	Updates this variable with the max of tf.IndexedSlices and itself.


	参数

	
	sparse_delta – tf.IndexedSlices to use as an argument of max with this
variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_min(sparse_delta, use_locking=False, name=None)

	Updates this variable with the min of tf.IndexedSlices and itself.


	参数

	
	sparse_delta – tf.IndexedSlices to use as an argument of min with this
variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_mul(sparse_delta, use_locking=False, name=None)

	Multiply this variable by tf.IndexedSlices.


	参数

	
	sparse_delta – tf.IndexedSlices to multiply this variable by.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_nd_add(indices, updates, name=None)

	Applies sparse addition to individual values or slices in a Variable.

The Variable has rank P and indices is a Tensor of rank Q.

indices must be integer tensor, containing indices into self.
It must be shape [d_0, …, d_{Q-2}, K] where 0 < K <= P.

The innermost dimension of indices (with length K) corresponds to
indices into elements (if K = P) or slices (if K < P) along the `K`th
dimension of self.

updates is Tensor of rank Q-1+P-K with shape:

`
[d_0, ..., d_{Q-2}, self.shape[K], ..., self.shape[P-1]].
`

For example, say we want to add 4 scattered elements to a rank-1 tensor to
8 elements. In Python, that update would look like this:


	```python

	v = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
add = v.scatter_nd_add(indices, updates)
with tf.compat.v1.Session() as sess:


print sess.run(add)








```

The resulting update to v would look like this:


[1, 13, 3, 14, 14, 6, 7, 20]




See tf.scatter_nd for more details about how to make updates to
slices.


	参数

	
	indices – The indices to be used in the operation.


	updates – The values to be used in the operation.


	name – the name of the operation.






	返回

	The updated variable.










	
scatter_nd_sub(indices, updates, name=None)

	Applies sparse subtraction to individual values or slices in a Variable.

Assuming the variable has rank P and indices is a Tensor of rank Q.

indices must be integer tensor, containing indices into self.
It must be shape [d_0, …, d_{Q-2}, K] where 0 < K <= P.

The innermost dimension of indices (with length K) corresponds to
indices into elements (if K = P) or slices (if K < P) along the `K`th
dimension of self.

updates is Tensor of rank Q-1+P-K with shape:

`
[d_0, ..., d_{Q-2}, self.shape[K], ..., self.shape[P-1]].
`

For example, say we want to add 4 scattered elements to a rank-1 tensor to
8 elements. In Python, that update would look like this:


	```python

	v = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
op = v.scatter_nd_sub(indices, updates)
with tf.compat.v1.Session() as sess:


print sess.run(op)








```

The resulting update to v would look like this:


[1, -9, 3, -6, -6, 6, 7, -4]




See tf.scatter_nd for more details about how to make updates to
slices.


	参数

	
	indices – The indices to be used in the operation.


	updates – The values to be used in the operation.


	name – the name of the operation.






	返回

	The updated variable.










	
scatter_nd_update(indices, updates, name=None)

	Applies sparse assignment to individual values or slices in a Variable.

The Variable has rank P and indices is a Tensor of rank Q.

indices must be integer tensor, containing indices into self.
It must be shape [d_0, …, d_{Q-2}, K] where 0 < K <= P.

The innermost dimension of indices (with length K) corresponds to
indices into elements (if K = P) or slices (if K < P) along the `K`th
dimension of self.

updates is Tensor of rank Q-1+P-K with shape:

`
[d_0, ..., d_{Q-2}, self.shape[K], ..., self.shape[P-1]].
`

For example, say we want to add 4 scattered elements to a rank-1 tensor to
8 elements. In Python, that update would look like this:


	```python

	v = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
op = v.scatter_nd_assign(indices, updates)
with tf.compat.v1.Session() as sess:


print sess.run(op)








```

The resulting update to v would look like this:


[1, 11, 3, 10, 9, 6, 7, 12]




See tf.scatter_nd for more details about how to make updates to
slices.


	参数

	
	indices – The indices to be used in the operation.


	updates – The values to be used in the operation.


	name – the name of the operation.






	返回

	The updated variable.










	
scatter_sub(sparse_delta, use_locking=False, name=None)

	Subtracts tf.IndexedSlices from this variable.


	参数

	
	sparse_delta – tf.IndexedSlices to be subtracted from this variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
scatter_update(sparse_delta, use_locking=False, name=None)

	Assigns tf.IndexedSlices to this variable.


	参数

	
	sparse_delta – tf.IndexedSlices to be assigned to this variable.


	use_locking – If True, use locking during the operation.


	name – the name of the operation.






	返回

	The updated variable.



	Raises

	TypeError – if sparse_delta is not an IndexedSlices.










	
set_shape(shape)

	Overrides the shape for this variable.


	参数

	shape – the TensorShape representing the overridden shape.










	
shape

	The TensorShape of this variable.


	返回

	A TensorShape.










	
sparse_read(indices, name=None)

	Gather slices from params axis axis according to indices.

This function supports a subset of tf.gather, see tf.gather for details on
usage.


	参数

	
	indices – The index Tensor.  Must be one of the following types: int32,
int64. Must be in range [0, params.shape[axis]).


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as params.










	
synchronization

	




	
to_proto(export_scope=None)

	Converts a Variable to a VariableDef protocol buffer.


	参数

	export_scope – Optional string. Name scope to remove.



	返回

	A VariableDef protocol buffer, or None if the Variable is not
in the specified name scope.










	
trainable

	




	
value()

	Returns the last snapshot of this variable.

You usually do not need to call this method as all ops that need the value
of the variable call it automatically through a convert_to_tensor() call.

Returns a Tensor which holds the value of the variable.  You can not
assign a new value to this tensor as it is not a reference to the variable.

To avoid copies, if the consumer of the returned value is on the same device
as the variable, this actually returns the live value of the variable, not
a copy.  Updates to the variable are seen by the consumer.  If the consumer
is on a different device it will get a copy of the variable.


	返回

	A Tensor containing the value of the variable.














	
tensorflow.VariableAggregation

	tensorflow.python.ops.variables.VariableAggregationV2 的别名






	
class tensorflow.VariableSynchronization

	基类：enum.Enum

Indicates when a distributed variable will be synced.


	AUTO: Indicates that the synchronization will be determined by the current
DistributionStrategy (eg. With MirroredStrategy this would be
ON_WRITE).


	NONE: Indicates that there will only be one copy of the variable, so
there is no need to sync.


	ON_WRITE: Indicates that the variable will be updated across devices
every time it is written.


	ON_READ: Indicates that the variable will be aggregated across devices
when it is read (eg. when checkpointing or when evaluating an op that uses
the variable).





	
AUTO = 0

	




	
NONE = 1

	




	
ON_READ = 3

	




	
ON_WRITE = 2

	








	
tensorflow.abs(x, name=None)

	Computes the absolute value of a tensor.

Given a tensor of integer or floating-point values, this operation returns a
tensor of the same type, where each element contains the absolute value of the
corresponding element in the input.

Given a tensor x of complex numbers, this operation returns a tensor of type
float32 or float64 that is the absolute value of each element in x. For
a complex number \(a + bj\), its absolute value is computed as \(sqrt{a^2
+ b^2}\).  For example:

>>> x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
>>> tf.abs(x)
<tf.Tensor: shape=(2, 1), dtype=float64, numpy=
array([[5.25594901],
       [6.60492241]])>






	参数

	
	x – A Tensor or SparseTensor of type float16, float32, float64,
int32, int64, complex64 or complex128.


	name – A name for the operation (optional).






	返回

	
	A Tensor or SparseTensor of the same size, type and sparsity as x,

	with absolute values. Note, for complex64 or complex128 input, the
returned Tensor will be of type float32 or float64, respectively.





If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.abs(x.values, …), x.dense_shape)












	
tensorflow.acos(x, name=None)

	Computes acos of x element-wise.


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.acosh(x, name=None)

	Computes inverse hyperbolic cosine of x element-wise.

Given an input tensor, the function computes inverse hyperbolic cosine of every element.
Input range is [1, inf]. It returns nan if the input lies outside the range.

`python
x = tf.constant([-2, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.acosh(x) ==> [nan nan 0. 0.62236255 5.9914584 9.903487 inf]
`


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.add(x, y, name=None)

	Returns x + y element-wise.

NOTE: math.add supports broadcasting. AddN does not. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.add_n(inputs, name=None)

	Adds all input tensors element-wise.

tf.math.add_n performs the same operation as tf.math.accumulate_n, but it
waits for all of its inputs to be ready before beginning to sum.
This buffering can result in higher memory consumption when inputs are ready
at different times, since the minimum temporary storage required is
proportional to the input size rather than the output size.

This op does not [broadcast](
https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html)
its inputs. If you need broadcasting, use tf.math.add (or the + operator)
instead.

For example:

>>> a = tf.constant([[3, 5], [4, 8]])
>>> b = tf.constant([[1, 6], [2, 9]])
>>> tf.math.add_n([a, b, a])
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 7, 16],
       [10, 25]], dtype=int32)>






	参数

	
	inputs – A list of tf.Tensor or tf.IndexedSlices objects, each with the
same shape and type. tf.IndexedSlices objects will be converted into
dense tensors prior to adding.


	name – A name for the operation (optional).






	返回

	A tf.Tensor of the same shape and type as the elements of inputs.



	Raises

	
	ValueError – If inputs don’t all have same shape and dtype or the shape


	cannot be inferred.













	
tensorflow.argmax(input, axis=None, output_type=tf.int64, name=None)

	Returns the index with the largest value across axes of a tensor.

Note that in case of ties the identity of the return value is not guaranteed.

For example:

>>> A = tf.constant([2, 20, 30, 3, 6])
>>> tf.math.argmax(A)  # A[2] is maximum in tensor A
<tf.Tensor: shape=(), dtype=int64, numpy=2>
>>> B = tf.constant([[2, 20, 30, 3, 6], [3, 11, 16, 1, 8],
...                  [14, 45, 23, 5, 27]])
>>> tf.math.argmax(B, 0)
<tf.Tensor: shape=(5,), dtype=int64, numpy=array([2, 2, 0, 2, 2])>
>>> tf.math.argmax(B, 1)
<tf.Tensor: shape=(3,), dtype=int64, numpy=array([2, 2, 1])>






	参数

	
	input – A Tensor.


	axis – An integer, the axis to reduce across. Default to 0.


	output_type – An optional output dtype (tf.int32 or tf.int64). Defaults
to tf.int64.


	name – An optional name for the operation.






	返回

	A Tensor of type output_type.










	
tensorflow.argmin(input, axis=None, output_type=tf.int64, name=None)

	Returns the index with the smallest value across axes of a tensor.

Note that in case of ties the identity of the return value is not guaranteed.


	参数

	
	input – A Tensor. Must be one of the following types: float32, float64,
int32, uint8, int16, int8, complex64, int64, qint8,
quint8, qint32, bfloat16, uint16, complex128, half, uint32,
uint64.


	axis – A Tensor. Must be one of the following types: int32, int64.
int32 or int64, must be in the range -rank(input), rank(input)).
Describes which axis of the input Tensor to reduce across. For vectors,
use axis = 0.


	output_type – An optional tf.DType from: tf.int32, tf.int64. Defaults to
tf.int64.


	name – A name for the operation (optional).






	返回

	A Tensor of type output_type.





Usage:
`python
import tensorflow as tf
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
b = tf.math.argmin(input = a)
c = tf.keras.backend.eval(b)
# c = 0
# here a[0] = 1 which is the smallest element of a across axis 0
`






	
tensorflow.argsort(values, axis=-1, direction='ASCENDING', stable=False, name=None)

	Returns the indices of a tensor that give its sorted order along an axis.

For a 1D tensor, tf.gather(values, tf.argsort(values)) is equivalent to
tf.sort(values). For higher dimensions, the output has the same shape as
values, but along the given axis, values represent the index of the sorted
element in that slice of the tensor at the given position.

Usage:

`python
import tensorflow as tf
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
b = tf.argsort(a,axis=-1,direction='ASCENDING',stable=False,name=None)
c = tf.keras.backend.eval(b)
# Here, c = [0 3 1 2 5 4]
`


	参数

	
	values – 1-D or higher numeric Tensor.


	axis – The axis along which to sort. The default is -1, which sorts the last
axis.


	direction – The direction in which to sort the values (‘ASCENDING’ or
‘DESCENDING’).


	stable – If True, equal elements in the original tensor will not be
re-ordered in the returned order. Unstable sort is not yet implemented,
but will eventually be the default for performance reasons. If you require
a stable order, pass stable=True for forwards compatibility.


	name – Optional name for the operation.






	返回

	
	An int32 Tensor with the same shape as values. The indices that would

	sort each slice of the given values along the given axis.









	Raises

	ValueError – If axis is not a constant scalar, or the direction is invalid.










	
tensorflow.as_dtype(type_value)

	Converts the given type_value to a DType.


	参数

	type_value – A value that can be converted to a tf.DType object. This may
currently be a tf.DType object, a [DataType
enum](https://www.tensorflow.org/code/tensorflow/core/framework/types.proto),


a string type name, or a numpy.dtype.








	返回

	A DType corresponding to type_value.



	Raises

	TypeError – If type_value cannot be converted to a DType.










	
tensorflow.as_string(input, precision=-1, scientific=False, shortest=False, width=-1, fill='', name=None)

	Converts each entry in the given tensor to strings.

Supports many numeric types and boolean.

For Unicode, see the
[https://www.tensorflow.org/tutorials/representation/unicode](Working with Unicode text)
tutorial.

Examples:

>>> tf.strings.as_string([3, 2])
<tf.Tensor: shape=(2,), dtype=string, numpy=array([b'3', b'2'], dtype=object)>
>>> tf.strings.as_string([3.1415926, 2.71828], precision=2).numpy()
array([b'3.14', b'2.72'], dtype=object)






	参数

	
	input – A Tensor. Must be one of the following types: int8, int16, int32, int64, complex64, complex128, float32, float64, bool.


	precision – An optional int. Defaults to -1.
The post-decimal precision to use for floating point numbers.
Only used if precision > -1.


	scientific – An optional bool. Defaults to False.
Use scientific notation for floating point numbers.


	shortest – An optional bool. Defaults to False.
Use shortest representation (either scientific or standard) for
floating point numbers.


	width – An optional int. Defaults to -1.
Pad pre-decimal numbers to this width.
Applies to both floating point and integer numbers.
Only used if width > -1.


	fill – An optional string. Defaults to “”.
The value to pad if width > -1.  If empty, pads with spaces.
Another typical value is ‘0’.  String cannot be longer than 1 character.


	name – A name for the operation (optional).






	返回

	A Tensor of type string.










	
tensorflow.asin(x, name=None)

	Computes the trignometric inverse sine of x element-wise.

The tf.math.asin operation returns the inverse of tf.math.sin, such that
if y = tf.math.sin(x) then, x = tf.math.asin(y).

Note: The output of tf.math.asin will lie within the invertible range
of sine, i.e [-pi/2, pi/2].

For example:

```python
# Note: [1.047, 0.785] ~= [(pi/3), (pi/4)]
x = tf.constant([1.047, 0.785])
y = tf.math.sin(x) # [0.8659266, 0.7068252]

tf.math.asin(y) # [1.047, 0.785] = x
```


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.asinh(x, name=None)

	Computes inverse hyperbolic sine of x element-wise.


Given an input tensor, this function computes inverse hyperbolic sine
for every element in the tensor. Both input and output has a range of
[-inf, inf].

`python
x = tf.constant([-float("inf"), -2, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.asinh(x) ==> [-inf -1.4436355 -0.4812118 0.8813736 1.0159732 5.991471 9.903487 inf]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.assert_equal(x, y, message=None, summarize=None, name=None)

	Assert the condition x == y holds element-wise.

This Op checks that x[i] == y[i] holds for every pair of (possibly
broadcast) elements of x and y. If both x and y are empty, this is
trivially satisfied.

If x and y are not equal, message, as well as the first summarize
entries of x and y are printed, and InvalidArgumentError is raised.


	参数

	
	x – Numeric Tensor.


	y – Numeric Tensor, same dtype as and broadcastable to x.


	message – A string to prefix to the default message.


	summarize – Print this many entries of each tensor.


	name – A name for this operation (optional).  Defaults to “assert_equal”.






	返回

	
	Op that raises InvalidArgumentError if x == y is False. This can be

	used with tf.control_dependencies inside of `tf.function`s to block
followup computation until the check has executed.





@compatibility(eager)
returns None
@end_compatibility





	Raises

	InvalidArgumentError – if the check can be performed immediately and
x == y is False. The check can be performed immediately during eager
execution or if x and y are statically known.










	
tensorflow.assert_greater(x, y, message=None, summarize=None, name=None)

	Assert the condition x > y holds element-wise.

This Op checks that x[i] > y[i] holds for every pair of (possibly
broadcast) elements of x and y. If both x and y are empty, this is
trivially satisfied.

If x is not greater than y element-wise, message, as well as the first
summarize entries of x and y are printed, and InvalidArgumentError is
raised.


	参数

	
	x – Numeric Tensor.


	y – Numeric Tensor, same dtype as and broadcastable to x.


	message – A string to prefix to the default message.


	summarize – Print this many entries of each tensor.


	name – A name for this operation (optional).  Defaults to “assert_greater”.






	返回

	
	Op that raises InvalidArgumentError if x > y is False. This can be

	used with tf.control_dependencies inside of `tf.function`s to block
followup computation until the check has executed.





@compatibility(eager)
returns None
@end_compatibility





	Raises

	InvalidArgumentError – if the check can be performed immediately and
x > y is False. The check can be performed immediately during eager
execution or if x and y are statically known.










	
tensorflow.assert_less(x, y, message=None, summarize=None, name=None)

	Assert the condition x < y holds element-wise.

This Op checks that x[i] < y[i] holds for every pair of (possibly
broadcast) elements of x and y. If both x and y are empty, this is
trivially satisfied.

If x is not less than y element-wise, message, as well as the first
summarize entries of x and y are printed, and InvalidArgumentError is
raised.


	参数

	
	x – Numeric Tensor.


	y – Numeric Tensor, same dtype as and broadcastable to x.


	message – A string to prefix to the default message.


	summarize – Print this many entries of each tensor.


	name – A name for this operation (optional).  Defaults to “assert_less”.






	返回

	Op that raises InvalidArgumentError if x < y is False.
This can be used with tf.control_dependencies inside of `tf.function`s
to block followup computation until the check has executed.
@compatibility(eager)
returns None
@end_compatibility



	Raises

	InvalidArgumentError – if the check can be performed immediately and
x < y is False. The check can be performed immediately during eager
execution or if x and y are statically known.










	
tensorflow.assert_rank(x, rank, message=None, name=None)

	Assert that x has rank equal to rank.

This Op checks that the rank of x is equal to rank.

If x has a different rank, message, as well as the shape of x are
printed, and InvalidArgumentError is raised.


	参数

	
	x – Tensor.


	rank – Scalar integer Tensor.


	message – A string to prefix to the default message.


	name – A name for this operation (optional). Defaults to
“assert_rank”.






	返回

	Op raising InvalidArgumentError unless x has specified rank.
If static checks determine x has correct rank, a no_op is returned.
This can be used with tf.control_dependencies inside of `tf.function`s
to block followup computation until the check has executed.
@compatibility(eager)
returns None
@end_compatibility



	Raises

	InvalidArgumentError – if the check can be performed immediately and
x does not have rank rank. The check can be performed immediately
during eager execution or if the shape of x is statically known.










	
tensorflow.atan(x, name=None)

	Computes the trignometric inverse tangent of x element-wise.

The tf.math.atan operation returns the inverse of tf.math.tan, such that
if y = tf.math.tan(x) then, x = tf.math.atan(y).

Note: The output of tf.math.atan will lie within the invertible range
of tan, i.e (-pi/2, pi/2).

For example:

```python
# Note: [1.047, 0.785] ~= [(pi/3), (pi/4)]
x = tf.constant([1.047, 0.785])
y = tf.math.tan(x) # [1.731261, 0.99920404]

tf.math.atan(y) # [1.047, 0.785] = x
```


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.atan2(y, x, name=None)

	Computes arctangent of y/x element-wise, respecting signs of the arguments.

This is the angle ( theta in [-pi, pi] ) such that
[ x = r cos(theta) ]
and
[ y = r sin(theta) ]
where (r = sqrt(x^2 + y^2) ).


	参数

	
	y – A Tensor. Must be one of the following types: bfloat16, half, float32, float64.


	x – A Tensor. Must have the same type as y.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as y.










	
tensorflow.atanh(x, name=None)

	Computes inverse hyperbolic tangent of x element-wise.


Given an input tensor, this function computes inverse hyperbolic tangent
for every element in the tensor. Input range is [-1,1] and output range is
[-inf, inf]. If input is -1, output will be -inf and if the
input is 1, output will be inf. Values outside the range will have
nan as output.

`python
x = tf.constant([-float("inf"), -1, -0.5, 1, 0, 0.5, 10, float("inf")])
tf.math.atanh(x) ==> [nan -inf -0.54930615 inf  0. 0.54930615 nan nan]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.batch_to_space(input, block_shape, crops, name=None)

	BatchToSpace for N-D tensors of type T.

This operation reshapes the “batch” dimension 0 into M + 1 dimensions of
shape block_shape + [batch], interleaves these blocks back into the grid
defined by the spatial dimensions [1, …, M], to obtain a result with the
same rank as the input.  The spatial dimensions of this intermediate result
are then optionally cropped according to crops to produce the output.  This
is the reverse of SpaceToBatch (see tf.space_to_batch).


	参数

	
	input – A N-D Tensor with shape input_shape = [batch] + spatial_shape +
remaining_shape, where spatial_shape has M dimensions.


	block_shape – A 1-D Tensor with shape [M]. Must be one of the following
types: int32, int64. All values must be >= 1. For backwards
compatibility with TF 1.0, this parameter may be an int, in which case it
is converted to
numpy.array([block_shape, block_shape],
dtype=numpy.int64).


	crops – A  2-D Tensor with shape [M, 2]. Must be one of the
following types: int32, int64. All values must be >= 0.
crops[i] = [crop_start, crop_end] specifies the amount to crop from
input dimension i + 1, which corresponds to spatial dimension i.
It is required that
crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1].
This operation is equivalent to the following steps:
1. Reshape input to reshaped of shape: [block_shape[0], …,


block_shape[M-1], batch / prod(block_shape), input_shape[1], …,
input_shape[N-1]]





	Permute dimensions of reshaped to produce permuted of shape
[batch / prod(block_shape),  input_shape[1], block_shape[0], …,
input_shape[M], block_shape[M-1], input_shape[M+1],





…, input_shape[N-1]]





	Reshape permuted to produce reshaped_permuted of shape
[batch / prod(block_shape), input_shape[1] * block_shape[0], …,
input_shape[M] * block_shape[M-1], input_shape[M+1], …,
input_shape[N-1]]


	Crop the start and end of dimensions [1, …, M] of
reshaped_permuted according to crops to produce the output
of shape:
[batch / prod(block_shape),  input_shape[1] *


block_shape[0] - crops[0,0] - crops[0,1], …, input_shape[M] *
block_shape[M-1] - crops[M-1,0] - crops[M-1,1],  input_shape[M+1],
…, input_shape[N-1]]








Some Examples:
(1) For the following input of shape [4, 1, 1, 1],


block_shape = [2, 2], and crops = [[0, 0], [0, 0]]:
```python
[[[[1]]],


[[[2]]],
[[[3]]],
[[[4]]]]




`
The output tensor has shape `[1, 2, 2, 1]` and value:
` x = [[[[1], [2]],


[[3], [4]]]] ```








	For the following input of shape [4, 1, 1, 3],





block_shape = [2, 2], and crops = [[0, 0], [0, 0]]:
```python
[[[1,  2,   3]],


[[4,  5,   6]],
[[7,  8,   9]],
[[10, 11, 12]]]




```
The output tensor has shape [1, 2, 2, 3] and value:
```python
x = [[[[1, 2, 3], [4,  5,  6 ]],


[[7, 8, 9], [10, 11, 12]]]]




```





	For the following






input of shape [4, 2, 2, 1],
block_shape = [2, 2], and crops = [[0, 0], [0, 0]]:
```python
x = [[[[1], [3]], [[ 9], [11]]],


[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]




```
The output tensor has shape [1, 4, 4, 1] and value:
```python
x = [[[1],  [2],  [ 3], [ 4]],


[[5],  [6],  [ 7], [ 8]],
[[9],  [10], [11], [12]],
[[13], [14], [15], [16]]]




```





	For the following input of shape





[8, 1, 3, 1],
block_shape = [2, 2], and crops = [[0, 0], [2, 0]]:
```python
x = [[[[0], [ 1], [ 3]]],


[[[0], [ 9], [11]]],
[[[0], [ 2], [ 4]]],
[[[0], [10], [12]]],
[[[0], [ 5], [ 7]]],
[[[0], [13], [15]]],
[[[0], [ 6], [ 8]]],
[[[0], [14], [16]]]]




```
The output tensor has shape [2, 2, 4, 1] and value:
```python
x = [[[[ 1], [ 2], [ 3], [ 4]],



[[ 5], [ 6], [ 7], [ 8]]],





	[[[ 9], [10], [11], [12]],

	[[13], [14], [15], [16]]]] ```

















	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.bitcast(input, type, name=None)

	Bitcasts a tensor from one type to another without copying data.

Given a tensor input, this operation returns a tensor that has the same buffer
data as input with datatype type.

If the input datatype T is larger than the output datatype type then the
shape changes from […] to […, sizeof(T)/sizeof(type)].

If T is smaller than type, the operator requires that the rightmost
dimension be equal to sizeof(type)/sizeof(T). The shape then goes from
[…, sizeof(type)/sizeof(T)] to […].

tf.bitcast() and tf.cast() work differently when real dtype is casted as a complex dtype
(e.g. tf.complex64 or tf.complex128) as tf.cast() make imaginary part 0 while tf.bitcast()
gives module error.
For example,

Example 1:

>>> a = [1., 2., 3.]
>>> equality_bitcast = tf.bitcast(a, tf.complex128)
Traceback (most recent call last):
...
InvalidArgumentError: Cannot bitcast from 1 to 18 [Op:Bitcast]
>>> equality_cast = tf.cast(a, tf.complex128)
>>> print(equality_cast)
tf.Tensor([1.+0.j 2.+0.j 3.+0.j], shape=(3,), dtype=complex128)





Example 2:

>>> tf.bitcast(tf.constant(0xffffffff, dtype=tf.uint32), tf.uint8)
<tf.Tensor: shape=(4,), dtype=uint8, numpy=array([255, 255, 255, 255], dtype=uint8)>





Example 3:

>>> x = [1., 2., 3.]
>>> y = [0., 2., 3.]
>>> equality= tf.equal(x,y)
>>> equality_cast = tf.cast(equality,tf.float32)
>>> equality_bitcast = tf.bitcast(equality_cast,tf.uint8)
>>> print(equality)
tf.Tensor([False True True], shape=(3,), dtype=bool)
>>> print(equality_cast)
tf.Tensor([0. 1. 1.], shape=(3,), dtype=float32)
>>> print(equality_bitcast)
tf.Tensor(
    [[  0   0   0   0]
     [  0   0 128  63]
     [  0   0 128  63]], shape=(3, 4), dtype=uint8)





NOTE: Bitcast is implemented as a low-level cast, so machines with different
endian orderings will give different results.


	参数

	
	input – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32.


	type – A tf.DType from: tf.bfloat16, tf.half, tf.float32, tf.float64, tf.int64, tf.int32, tf.uint8, tf.uint16, tf.uint32, tf.uint64, tf.int8, tf.int16, tf.complex64, tf.complex128, tf.qint8, tf.quint8, tf.qint16, tf.quint16, tf.qint32.


	name – A name for the operation (optional).






	返回

	A Tensor of type type.










	
tensorflow.boolean_mask(tensor, mask, axis=None, name='boolean_mask')

	Apply boolean mask to tensor.

Numpy equivalent is tensor[mask].

`python
# 1-D example
tensor = [0, 1, 2, 3]
mask = np.array([True, False, True, False])
boolean_mask(tensor, mask)  # [0, 2]
`

In general, 0 < dim(mask) = K <= dim(tensor), and mask’s shape must match
the first K dimensions of tensor’s shape.  We then have:


boolean_mask(tensor, mask)[i, j1,…,jd] = tensor[i1,…,iK,j1,…,jd]




where (i1,…,iK) is the ith True entry of mask (row-major order).
The axis could be used with mask to indicate the axis to mask from.
In that case, axis + dim(mask) <= dim(tensor) and mask’s shape must match
the first axis + dim(mask) dimensions of tensor’s shape.

See also: tf.ragged.boolean_mask, which can be applied to both dense and
ragged tensors, and can be used if you need to preserve the masked dimensions
of tensor (rather than flattening them, as tf.boolean_mask does).


	参数

	
	tensor – N-D tensor.


	mask – K-D boolean tensor, K <= N and K must be known statically.


	axis – A 0-D int Tensor representing the axis in tensor to mask from. By
default, axis is 0 which will mask from the first dimension. Otherwise K +
axis <= N.


	name – A name for this operation (optional).






	返回

	(N-K+1)-dimensional tensor populated by entries in tensor corresponding
to True values in mask.



	Raises

	ValueError – If shapes do not conform.





Examples:

`python
# 2-D example
tensor = [[1, 2], [3, 4], [5, 6]]
mask = np.array([True, False, True])
boolean_mask(tensor, mask)  # [[1, 2], [5, 6]]
`






	
tensorflow.broadcast_dynamic_shape(shape_x, shape_y)

	Computes the shape of a broadcast given symbolic shapes.

When shape_x and shape_y are Tensors representing shapes (i.e. the result of
calling tf.shape on another Tensor) this computes a Tensor which is the shape
of the result of a broadcasting op applied in tensors of shapes shape_x and
shape_y.

For example, if shape_x is [1, 2, 3] and shape_y is [5, 1, 3], the result is a
Tensor whose value is [5, 2, 3].

This is useful when validating the result of a broadcasting operation when the
tensors do not have statically known shapes.


	参数

	
	shape_x – A rank 1 integer Tensor, representing the shape of x.


	shape_y – A rank 1 integer Tensor, representing the shape of y.






	返回

	A rank 1 integer Tensor representing the broadcasted shape.










	
tensorflow.broadcast_static_shape(shape_x, shape_y)

	Computes the shape of a broadcast given known shapes.

When shape_x and shape_y are fully known TensorShapes this computes a
TensorShape which is the shape of the result of a broadcasting op applied in
tensors of shapes shape_x and shape_y.

For example, if shape_x is [1, 2, 3] and shape_y is [5, 1, 3], the result is a
TensorShape whose value is [5, 2, 3].

This is useful when validating the result of a broadcasting operation when the
tensors have statically known shapes.


	参数

	
	shape_x – A TensorShape


	shape_y – A TensorShape






	返回

	A TensorShape representing the broadcasted shape.



	Raises

	ValueError – If the two shapes can not be broadcasted.










	
tensorflow.broadcast_to(input, shape, name=None)

	Broadcast an array for a compatible shape.

Broadcasting is the process of making arrays to have compatible shapes
for arithmetic operations. Two shapes are compatible if for each
dimension pair they are either equal or one of them is one. When trying
to broadcast a Tensor to a shape, it starts with the trailing dimensions,
and works its way forward.

For example,

>>> x = tf.constant([1, 2, 3])
>>> y = tf.broadcast_to(x, [3, 3])
>>> print(y)
tf.Tensor(
    [[1 2 3]
     [1 2 3]
     [1 2 3]], shape=(3, 3), dtype=int32)





In the above example, the input Tensor with the shape of [1, 3]
is broadcasted to output Tensor with shape of [3, 3].


	参数

	
	input – A Tensor. A Tensor to broadcast.


	shape – A Tensor. Must be one of the following types: int32, int64.
An 1-D int Tensor. The shape of the desired output.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.case(pred_fn_pairs, default=None, exclusive=False, strict=False, name='case')

	Create a case operation.

See also tf.switch_case.

The pred_fn_pairs parameter is a list of pairs of size N.
Each pair contains a boolean scalar tensor and a python callable that
creates the tensors to be returned if the boolean evaluates to True.
default is a callable generating a list of tensors. All the callables
in pred_fn_pairs as well as default (if provided) should return the same
number and types of tensors.

If exclusive==True, all predicates are evaluated, and an exception is
thrown if more than one of the predicates evaluates to True.
If exclusive==False, execution stops at the first predicate which
evaluates to True, and the tensors generated by the corresponding function
are returned immediately. If none of the predicates evaluate to True, this
operation returns the tensors generated by default.

tf.case supports nested structures as implemented in
tf.contrib.framework.nest. All of the callables must return the same
(possibly nested) value structure of lists, tuples, and/or named tuples.
Singleton lists and tuples form the only exceptions to this: when returned by
a callable, they are implicitly unpacked to single values. This
behavior is disabled by passing strict=True.

@compatibility(v2)
pred_fn_pairs could be a dictionary in v1. However, tf.Tensor and
tf.Variable are no longer hashable in v2, so cannot be used as a key for a
dictionary.  Please use a list or a tuple instead.
@end_compatibility

Example 1:

Pseudocode:

`
if (x < y) return 17;
else return 23;
`

Expressions:

`python
f1 = lambda: tf.constant(17)
f2 = lambda: tf.constant(23)
r = tf.case([(tf.less(x, y), f1)], default=f2)
`

Example 2:

Pseudocode:

`
if (x < y && x > z) raise OpError("Only one predicate may evaluate to True");
if (x < y) return 17;
else if (x > z) return 23;
else return -1;
`

Expressions:

```python
def f1(): return tf.constant(17)
def f2(): return tf.constant(23)
def f3(): return tf.constant(-1)
r = tf.case([(tf.less(x, y), f1), (tf.greater(x, z), f2)],


default=f3, exclusive=True)




```


	参数

	
	pred_fn_pairs – List of pairs of a boolean scalar tensor and a callable which
returns a list of tensors.


	default – Optional callable that returns a list of tensors.


	exclusive – True iff at most one predicate is allowed to evaluate to True.


	strict – A boolean that enables/disables ‘strict’ mode; see above.


	name – A name for this operation (optional).






	返回

	The tensors returned by the first pair whose predicate evaluated to True, or
those returned by default if none does.



	Raises

	
	TypeError – If pred_fn_pairs is not a list/tuple.


	TypeError – If pred_fn_pairs is a list but does not contain 2-tuples.


	TypeError – If fns[i] is not callable for any i, or default is not
callable.













	
tensorflow.cast(x, dtype, name=None)

	Casts a tensor to a new type.

The operation casts x (in case of Tensor) or x.values
(in case of SparseTensor or IndexedSlices) to dtype.

For example:

>>> x = tf.constant([1.8, 2.2], dtype=tf.float32)
>>> tf.dtypes.cast(x, tf.int32)
<tf.Tensor: shape=(2,), dtype=int32, numpy=array([1, 2], dtype=int32)>





The operation supports data types (for x and dtype) of
uint8, uint16, uint32, uint64, int8, int16, int32, int64,
float16, float32, float64, complex64, complex128, bfloat16.
In case of casting from complex types (complex64, complex128) to real
types, only the real part of x is returned. In case of casting from real
types to complex types (complex64, complex128), the imaginary part of the
returned value is set to 0. The handling of complex types here matches the
behavior of numpy.


	参数

	
	x – A Tensor or SparseTensor or IndexedSlices of numeric type. It could
be uint8, uint16, uint32, uint64, int8, int16, int32,
int64, float16, float32, float64, complex64, complex128,
bfloat16.


	dtype – The destination type. The list of supported dtypes is the same as
x.


	name – A name for the operation (optional).






	返回

	
	A Tensor or SparseTensor or IndexedSlices with same shape as x and

	same type as dtype.









	Raises

	TypeError – If x cannot be cast to the dtype.










	
tensorflow.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None)

	Clips values of multiple tensors by the ratio of the sum of their norms.

Given a tuple or list of tensors t_list, and a clipping ratio clip_norm,
this operation returns a list of clipped tensors list_clipped
and the global norm (global_norm) of all tensors in t_list. Optionally,
if you’ve already computed the global norm for t_list, you can specify
the global norm with use_norm.

To perform the clipping, the values t_list[i] are set to:


t_list[i] * clip_norm / max(global_norm, clip_norm)




where:


global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))




If clip_norm > global_norm then the entries in t_list remain as they are,
otherwise they’re all shrunk by the global ratio.

If global_norm == infinity then the entries in t_list are all set to NaN
to signal that an error occurred.

Any of the entries of t_list that are of type None are ignored.

This is the correct way to perform gradient clipping (Pascanu et al., 2012).

However, it is slower than clip_by_norm() because all the parameters must be
ready before the clipping operation can be performed.


	参数

	
	t_list – A tuple or list of mixed Tensors, IndexedSlices, or None.


	clip_norm – A 0-D (scalar) Tensor > 0. The clipping ratio.


	use_norm – A 0-D (scalar) Tensor of type float (optional). The global
norm to use. If not provided, global_norm() is used to compute the norm.


	name – A name for the operation (optional).






	返回

	A list of Tensors of the same type as list_t.
global_norm: A 0-D (scalar) Tensor representing the global norm.



	返回类型

	list_clipped



	Raises

	TypeError – If t_list is not a sequence.





References


	On the difficulty of training Recurrent Neural Networks:

	[Pascanu et al., 2012](http://proceedings.mlr.press/v28/pascanu13.html)
([pdf](http://proceedings.mlr.press/v28/pascanu13.pdf))










	
tensorflow.clip_by_norm(t, clip_norm, axes=None, name=None)

	Clips tensor values to a maximum L2-norm.

Given a tensor t, and a maximum clip value clip_norm, this operation
normalizes t so that its L2-norm is less than or equal to clip_norm,
along the dimensions given in axes. Specifically, in the default case
where all dimensions are used for calculation, if the L2-norm of t is
already less than or equal to clip_norm, then t is not modified. If
the L2-norm is greater than clip_norm, then this operation returns a
tensor of the same type and shape as t with its values set to:

t * clip_norm / l2norm(t)

In this case, the L2-norm of the output tensor is clip_norm.

As another example, if t is a matrix and axes == [1], then each row
of the output will have L2-norm less than or equal to clip_norm. If
axes == [0] instead, each column of the output will be clipped.

This operation is typically used to clip gradients before applying them with
an optimizer.


	参数

	
	t – A Tensor or IndexedSlices.


	clip_norm – A 0-D (scalar) Tensor > 0. A maximum clipping value.


	axes – A 1-D (vector) Tensor of type int32 containing the dimensions
to use for computing the L2-norm. If None (the default), uses all
dimensions.


	name – A name for the operation (optional).






	返回

	A clipped Tensor or IndexedSlices.



	Raises

	
	ValueError – If the clip_norm tensor is not a 0-D scalar tensor.


	TypeError – If dtype of the input is not a floating point or
complex type.













	
tensorflow.clip_by_value(t, clip_value_min, clip_value_max, name=None)

	Clips tensor values to a specified min and max.

Given a tensor t, this operation returns a tensor of the same type and
shape as t with its values clipped to clip_value_min and clip_value_max.
Any values less than clip_value_min are set to clip_value_min. Any values
greater than clip_value_max are set to clip_value_max.

Note: clip_value_min needs to be smaller or equal to clip_value_max for
correct results.

For example:

Basic usage passes a scalar as the min and max value.

>>> t = tf.constant([[-10., -1., 0.], [0., 2., 10.]])
>>> t2 = tf.clip_by_value(t, clip_value_min=-1, clip_value_max=1)
>>> t2.numpy()
array([[-1., -1.,  0.],
       [ 0.,  1.,  1.]], dtype=float32)





The min and max can be the same size as t, or broadcastable to that size.

>>> t = tf.constant([[-1, 0., 10.], [-1, 0, 10]])
>>> clip_min = [[2],[1]]
>>> t3 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100)
>>> t3.numpy()
array([[ 2.,  2., 10.],
       [ 1.,  1., 10.]], dtype=float32)





Broadcasting fails, intentionally, if you would expand the dimensions of t

>>> t = tf.constant([[-1, 0., 10.], [-1, 0, 10]])
>>> clip_min = [[[2, 1]]] # Has a third axis
>>> t4 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100)
Traceback (most recent call last):
...
InvalidArgumentError: Incompatible shapes: [2,3] vs. [1,1,2]





It throws a TypeError if you try to clip an int to a float value
(tf.cast the input to float first).

>>> t = tf.constant([[1, 2], [3, 4]], dtype=tf.int32)
>>> t5 = tf.clip_by_value(t, clip_value_min=-3.1, clip_value_max=3.1)
Traceback (most recent call last):
...
TypeError: Cannot convert ...






	参数

	
	t – A Tensor or IndexedSlices.


	clip_value_min – The minimum value to clip to. A scalar Tensor or one that
is broadcastable to the shape of t.


	clip_value_max – The minimum value to clip to. A scalar Tensor or one that
is broadcastable to the shape of t.


	name – A name for the operation (optional).






	返回

	A clipped Tensor or IndexedSlices.



	Raises

	
	tf.errors.InvalidArgumentError – If the clip tensors would trigger array
broadcasting that would make the returned tensor larger than the input.


	TypeError – If dtype of the input is int32 and dtype of
the clip_value_min or clip_value_max is float32













	
tensorflow.complex(real, imag, name=None)

	Converts two real numbers to a complex number.

Given a tensor real representing the real part of a complex number, and a
tensor imag representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \(a + bj\), where
a represents the real part and b represents the imag part.

The input tensors real and imag must have the same shape.

For example:

`python
real = tf.constant([2.25, 3.25])
imag = tf.constant([4.75, 5.75])
tf.complex(real, imag)  # [[2.25 + 4.75j], [3.25 + 5.75j]]
`


	参数

	
	real – A Tensor. Must be one of the following types: float32, float64.


	imag – A Tensor. Must have the same type as real.


	name – A name for the operation (optional).






	返回

	A Tensor of type complex64 or complex128.



	Raises

	TypeError – Real and imag must be correct types










	
tensorflow.concat(values, axis, name='concat')

	Concatenates tensors along one dimension.

See also tf.tile, tf.stack, tf.repeat.

Concatenates the list of tensors values along dimension axis.  If
values[i].shape = [D0, D1, … Daxis(i), …Dn], the concatenated
result has shape


[D0, D1, … Raxis, …Dn]




where


Raxis = sum(Daxis(i))




That is, the data from the input tensors is joined along the axis
dimension.

The number of dimensions of the input tensors must match, and all dimensions
except axis must be equal.

For example:

>>> t1 = [[1, 2, 3], [4, 5, 6]]
>>> t2 = [[7, 8, 9], [10, 11, 12]]
>>> concat([t1, t2], 0)
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]], dtype=int32)>





>>> concat([t1, t2], 1)
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 10, 11, 12]], dtype=int32)>





As in Python, the axis could also be negative numbers. Negative axis
are interpreted as counting from the end of the rank, i.e.,


axis + rank(values)-th dimension.




For example:

>>> t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]]
>>> t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
>>> tf.concat([t1, t2], -1)
<tf.Tensor: shape=(2, 2, 4), dtype=int32, numpy=
  array([[[ 1,  2,  7,  4],
          [ 2,  3,  8,  4]],
         [[ 4,  4,  2, 10],
          [ 5,  3, 15, 11]]], dtype=int32)>





Note: If you are concatenating along a new axis consider using stack.
E.g.

`python
tf.concat([tf.expand_dims(t, axis) for t in tensors], axis)
`

can be rewritten as

`python
tf.stack(tensors, axis=axis)
`


	参数

	
	values – A list of Tensor objects or a single Tensor.


	axis – 0-D int32 Tensor.  Dimension along which to concatenate. Must be
in the range [-rank(values), rank(values)). As in Python, indexing for
axis is 0-based. Positive axis in the rage of [0, rank(values)) refers
to axis-th dimension. And negative axis refers to axis +
rank(values)-th dimension.


	name – A name for the operation (optional).






	返回

	A Tensor resulting from concatenation of the input tensors.










	
tensorflow.cond(pred, true_fn=None, false_fn=None, name=None)

	Return true_fn() if the predicate pred is true else false_fn().

true_fn and false_fn both return lists of output tensors. true_fn and
false_fn must have the same non-zero number and type of outputs.

WARNING: Any Tensors or Operations created outside of true_fn and
false_fn will be executed regardless of which branch is selected at runtime.

Although this behavior is consistent with the dataflow model of TensorFlow,
it has frequently surprised users who expected a lazier semantics.
Consider the following simple program:

`python
z = tf.multiply(a, b)
result = tf.cond(x < y, lambda: tf.add(x, z), lambda: tf.square(y))
`

If x < y, the tf.add operation will be executed and tf.square
operation will not be executed. Since z is needed for at least one
branch of the cond, the tf.multiply operation is always executed,
unconditionally.

Note that cond calls true_fn and false_fn exactly once (inside the
call to cond, and not at all during Session.run()). cond
stitches together the graph fragments created during the true_fn and
false_fn calls with some additional graph nodes to ensure that the right
branch gets executed depending on the value of pred.

tf.cond supports nested structures as implemented in
tensorflow.python.util.nest. Both true_fn and false_fn must return the
same (possibly nested) value structure of lists, tuples, and/or named tuples.
Singleton lists and tuples form the only exceptions to this: when returned by
true_fn and/or false_fn, they are implicitly unpacked to single values.

Note: It is illegal to “directly” use tensors created inside a cond branch
outside it, e.g. by storing a reference to a branch tensor in the python
state. If you need to use a tensor created in a branch function you should
return it as an output of the branch function and use the output from
tf.cond instead.


	参数

	
	pred – A scalar determining whether to return the result of true_fn or
false_fn.


	true_fn – The callable to be performed if pred is true.


	false_fn – The callable to be performed if pred is false.


	name – Optional name prefix for the returned tensors.






	返回

	Tensors returned by the call to either true_fn or false_fn. If the
callables return a singleton list, the element is extracted from the list.



	Raises

	
	TypeError – if true_fn or false_fn is not callable.


	ValueError – if true_fn and false_fn do not return the same number of
tensors, or return tensors of different types.








Example:

`python
x = tf.constant(2)
y = tf.constant(5)
def f1(): return tf.multiply(x, 17)
def f2(): return tf.add(y, 23)
r = tf.cond(tf.less(x, y), f1, f2)
# r is set to f1().
# Operations in f2 (e.g., tf.add) are not executed.
`






	
tensorflow.constant(value, dtype=None, shape=None, name='Const')

	Creates a constant tensor from a tensor-like object.

Note: All eager tf.Tensor values are immutable (in contrast to
tf.Variable). There is nothing especially _constant_ about the value
returned from tf.constant. This function it is not fundamentally different
from tf.convert_to_tensor. The name tf.constant comes from the symbolic
APIs (like tf.data or keras functional models) where the value is embeded
in a Const node in the tf.Graph. tf.constant is useful for asserting
that the value can be embedded that way.

If the argument dtype is not specified, then the type is inferred from
the type of value.

>>> # Constant 1-D Tensor from a python list.
>>> tf.constant([1, 2, 3, 4, 5, 6])
<tf.Tensor: shape=(6,), dtype=int32,
    numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
>>> # Or a numpy array
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> tf.constant(a)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
  array([[1, 2, 3],
         [4, 5, 6]])>





If dtype is specified the resulting tensor values are cast to the requested
dtype.

>>> tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
<tf.Tensor: shape=(6,), dtype=float64,
    numpy=array([1., 2., 3., 4., 5., 6.])>





If shape is set, the value is reshaped to match. Scalars are expanded to
fill the shape:

>>> tf.constant(0, shape=(2, 3))
  <tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[0, 0, 0],
         [0, 0, 0]], dtype=int32)>
>>> tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[1, 2, 3],
         [4, 5, 6]], dtype=int32)>





tf.constant has no effect if an eager Tensor is passed as the value, it
even transmits gradients:

>>> v = tf.Variable([0.0])
>>> with tf.GradientTape() as g:
...     loss = tf.constant(v + v)
>>> g.gradient(loss, v).numpy()
array([2.], dtype=float32)





But, since tf.constant embeds the value in the tf.Graph this fails for
symbolic tensors:

>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.constant(i)
Traceback (most recent call last):
...
NotImplementedError: ...





tf.constant will _always_ create CPU (host) tensors. In order to create
tensors on other devices, use tf.identity. (If the value is an eager
Tensor, however, the tensor will be returned unmodified as mentioned above.)

Related Ops:


	tf.convert_to_tensor is similar but:
* It has no shape argument.
* Symbolic tensors are allowed to pass through.

>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.convert_to_tensor(i)







	tf.fill: differs in a few ways:
*   tf.constant supports arbitrary constants, not just uniform scalar


Tensors like tf.fill.





	tf.fill creates an Op in the graph that is expanded at runtime, so it
can efficiently represent large tensors.


	Since tf.fill does not embed the value, it can produce dynamically
sized outputs.









	参数

	
	value – A constant value (or list) of output type dtype.


	dtype – The type of the elements of the resulting tensor.


	shape – Optional dimensions of resulting tensor.


	name – Optional name for the tensor.






	返回

	A Constant Tensor.



	Raises

	
	TypeError – if shape is incorrectly specified or unsupported.


	ValueError – if called on a symbolic tensor.













	
tensorflow.constant_initializer

	tensorflow.python.ops.init_ops_v2.Constant 的别名






	
tensorflow.control_dependencies(control_inputs)

	Wrapper for Graph.control_dependencies() using the default graph.

See tf.Graph.control_dependencies
for more details.

When eager execution is enabled, any callable object in the control_inputs
list will be called.


	参数

	control_inputs – A list of Operation or Tensor objects which must be
executed or computed before running the operations defined in the context.
Can also be None to clear the control dependencies. If eager execution
is enabled, any callable object in the control_inputs list will be
called.



	返回

	A context manager that specifies control dependencies for all
operations constructed within the context.










	
tensorflow.convert_to_tensor(value, dtype=None, dtype_hint=None, name=None)

	Converts the given value to a Tensor.

This function converts Python objects of various types to Tensor
objects. It accepts Tensor objects, numpy arrays, Python lists,
and Python scalars. For example:

>>> def my_func(arg):
...   arg = tf.convert_to_tensor(arg, dtype=tf.float32)
...   return arg





>>> # The following calls are equivalent.
>>> value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))
>>> print(value_1)
tf.Tensor(
  [[1. 2.]
   [3. 4.]], shape=(2, 2), dtype=float32)
>>> value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])
>>> print(value_2)
tf.Tensor(
  [[1. 2.]
   [3. 4.]], shape=(2, 2), dtype=float32)
>>> value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))
>>> print(value_3)
tf.Tensor(
  [[1. 2.]
   [3. 4.]], shape=(2, 2), dtype=float32)





This function can be useful when composing a new operation in Python
(such as my_func in the example above). All standard Python op
constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,
and scalars in addition to Tensor objects.


	Note: This function diverges from default Numpy behavior for float and

	string types when None is present in a Python list or scalar. Rather
than silently converting None values, an error will be thrown.






	参数

	
	value – An object whose type has a registered Tensor conversion function.


	dtype – Optional element type for the returned tensor. If missing, the type
is inferred from the type of value.


	dtype_hint – Optional element type for the returned tensor, used when dtype
is None. In some cases, a caller may not have a dtype in mind when
converting to a tensor, so dtype_hint can be used as a soft preference.
If the conversion to dtype_hint is not possible, this argument has no
effect.


	name – Optional name to use if a new Tensor is created.






	返回

	A Tensor based on value.



	Raises

	
	TypeError – If no conversion function is registered for value to dtype.


	RuntimeError – If a registered conversion function returns an invalid value.


	ValueError – If the value is a tensor not of given dtype in graph mode.













	
tensorflow.cos(x, name=None)

	Computes cos of x element-wise.


Given an input tensor, this function computes cosine of every
element in the tensor. Input range is (-inf, inf) and
output range is [-1,1]. If input lies outside the boundary, nan
is returned.

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.cos(x) ==> [nan -0.91113025 0.87758255 0.5403023 0.36235774 0.48718765 -0.95215535 nan]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.cosh(x, name=None)

	Computes hyperbolic cosine of x element-wise.


Given an input tensor, this function computes hyperbolic cosine of every
element in the tensor. Input range is [-inf, inf] and output range
is [1, inf].

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 2, 10, float("inf")])
tf.math.cosh(x) ==> [inf 4.0515420e+03 1.1276259e+00 1.5430807e+00 1.8106556e+00 3.7621956e+00 1.1013233e+04 inf]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.cumsum(x, axis=0, exclusive=False, reverse=False, name=None)

	Compute the cumulative sum of the tensor x along axis.

By default, this op performs an inclusive cumsum, which means that the first
element of the input is identical to the first element of the output:
For example:

>>> # tf.cumsum([a, b, c])   # [a, a + b, a + b + c]
>>> x = tf.constant([2, 4, 6, 8])
>>> tf.cumsum(x)
<tf.Tensor: shape=(4,), dtype=int32,
numpy=array([ 2,  6, 12, 20], dtype=int32)>





>>> # using varying `axis` values
>>> y = tf.constant([[2, 4, 6, 8], [1,3,5,7]])
>>> tf.cumsum(y, axis=0)
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
array([[ 2,  4,  6,  8],
       [ 3,  7, 11, 15]], dtype=int32)>
>>> tf.cumsum(y, axis=1)
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
array([[ 2,  6, 12, 20],
       [ 1,  4,  9, 16]], dtype=int32)>





By setting the exclusive kwarg to True, an exclusive cumsum is performed
instead:

>>> # tf.cumsum([a, b, c], exclusive=True)  => [0, a, a + b]
>>> x = tf.constant([2, 4, 6, 8])
>>> tf.cumsum(x, exclusive=True)
<tf.Tensor: shape=(4,), dtype=int32,
numpy=array([ 0,  2,  6, 12], dtype=int32)>





By setting the reverse kwarg to True, the cumsum is performed in the
opposite direction:

>>> # tf.cumsum([a, b, c], reverse=True)  # [a + b + c, b + c, c]
>>> x = tf.constant([2, 4, 6, 8])
>>> tf.cumsum(x, reverse=True)
<tf.Tensor: shape=(4,), dtype=int32,
numpy=array([20, 18, 14,  8], dtype=int32)>





This is more efficient than using separate tf.reverse ops.
The reverse and exclusive kwargs can also be combined:

>>> # tf.cumsum([a, b, c], exclusive=True, reverse=True)  # [b + c, c, 0]
>>> x = tf.constant([2, 4, 6, 8])
>>> tf.cumsum(x, exclusive=True, reverse=True)
<tf.Tensor: shape=(4,), dtype=int32,
numpy=array([18, 14,  8,  0], dtype=int32)>






	参数

	
	x – A Tensor. Must be one of the following types: float32, float64,
int64, int32, uint8, uint16, int16, int8, complex64,
complex128, qint8, quint8, qint32, half.


	axis – A Tensor of type int32 (default: 0). Must be in the range
[-rank(x), rank(x)).


	exclusive – If True, perform exclusive cumsum.


	reverse – A bool (default: False).


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.custom_gradient(f=None)

	Decorator to define a function with a custom gradient.

This decorator allows fine grained control over the gradients of a sequence
for operations.  This may be useful for multiple reasons, including providing
a more efficient or numerically stable gradient for a sequence of operations.

For example, consider the following function that commonly occurs in the
computation of cross entropy and log likelihoods:

```python
def log1pexp(x):


return tf.math.log(1 + tf.exp(x))




```

Due to numerical instability, the gradient of this function evaluated at x=100
is NaN.  For example:

`python
x = tf.constant(100.)
y = log1pexp(x)
dy = tf.gradients(y, x) # Will be NaN when evaluated.
`

The gradient expression can be analytically simplified to provide numerical
stability:

```python
@tf.custom_gradient
def log1pexp(x):


e = tf.exp(x)
def grad(dy):


return dy * (1 - 1 / (1 + e))




return tf.math.log(1 + e), grad




```

With this definition, the gradient at x=100 will be correctly evaluated as
1.0.

Nesting custom gradients can lead to unintuitive results. The default
behavior does not correspond to n-th order derivatives. For example

```python
@tf.custom_gradient
def op(x):


y = op1(x)
@tf.custom_gradient
def grad_fn(dy):


gdy = op2(x, y, dy)
def grad_grad_fn(ddy):  # Not the 2nd order gradient of op w.r.t. x.


return op3(x, y, dy, ddy)




return gdy, grad_grad_fn




return y, grad_fn




```

The function grad_grad_fn will be calculating the first order gradient
of grad_fn with respect to dy, which is used to generate forward-mode
gradient graphs from backward-mode gradient graphs, but is not the same as
the second order gradient of op with respect to x.

Instead, wrap nested @tf.custom_gradients in another function:

```python
@tf.custom_gradient
def op_with_fused_backprop(x):


y, x_grad = fused_op(x)
def first_order_gradient(dy):


@tf.custom_gradient
def first_order_custom(unused_x):



	def second_order_and_transpose(ddy):

	return second_order_for_x(…), gradient_wrt_dy(…)





return x_grad, second_order_and_transpose




return dy * first_order_custom(x)




return y, first_order_gradient




```

Additional arguments to the inner @tf.custom_gradient-decorated function
control the expected return values of the innermost function.

See also tf.RegisterGradient which registers a gradient function for a
primitive TensorFlow operation. tf.custom_gradient on the other hand allows
for fine grained control over the gradient computation of a sequence of
operations.

Note that if the decorated function uses `Variable`s, the enclosing variable
scope must be using `ResourceVariable`s.


	参数

	f – function f(*x) that returns a tuple (y, grad_fn) where:
- x is a sequence of Tensor inputs to the function.
- y is a Tensor or sequence of Tensor outputs of applying


TensorFlow operations in f to x.





	grad_fn is a function with the signature g(*grad_ys) which returns
a list of Tensor`s - the derivatives of `Tensor`s in `y with respect
to the Tensor`s in `x.  grad_ys is a Tensor or sequence of
Tensor`s the same size as `y holding the initial value gradients for
each Tensor in y. In a pure mathematical sense, a vector-argument
vector-valued function f’s derivatives should be its Jacobian matrix
J. Here we are expressing the Jacobian J as a function grad_fn
which defines how J will transform a vector grad_ys when
left-multiplied with it (grad_ys * J). This functional representation
of a matrix is convenient to use for chain-rule calculation
(in e.g. the back-propagation algorithm).

If f uses Variable`s (that are not part of the
inputs), i.e. through `get_variable, then grad_fn should have
signature g(*grad_ys, variables=None), where variables is a list of
the Variable`s, and return a 2-tuple `(grad_xs, grad_vars), where
grad_xs is the same as above, and grad_vars is a list<Tensor>
with the derivatives of Tensor`s in `y with respect to the variables
(that is, grad_vars has one Tensor per variable in variables).









	返回

	A function h(x) which returns the same value as f(x)[0] and whose
gradient (as calculated by tf.gradients) is determined by f(x)[1].










	
tensorflow.device(device_name)

	Specifies the device for ops created/executed in this context.

This function specifies the device to be used for ops created/executed in a
particular context. Nested contexts will inherit and also create/execute
their ops on the specified device. If a specific device is not required,
consider not using this function so that a device can be automatically
assigned.  In general the use of this function is optional. device_name can
be fully specified, as in “/job:worker/task:1/device:cpu:0”, or partially
specified, containing only a subset of the “/”-separated fields. Any fields
which are specified will override device annotations from outer scopes.

For example:

```python
with tf.device(‘/job:foo’):


# ops created here have devices with /job:foo
with tf.device(‘/job:bar/task:0/device:gpu:2’):


# ops created here have the fully specified device above





	with tf.device(‘/device:gpu:1’):

	# ops created here have the device ‘/job:foo/device:gpu:1’








```


	参数

	device_name – The device name to use in the context.



	返回

	A context manager that specifies the default device to use for newly
created ops.



	Raises

	RuntimeError – If a function is passed in.










	
tensorflow.divide(x, y, name=None)

	Computes Python style division of x by y.

For example:

>>> x = tf.constant([16, 12, 11])
>>> y = tf.constant([4, 6, 2])
>>> tf.divide(x,y)
<tf.Tensor: shape=(3,), dtype=float64,
numpy=array([4. , 2. , 5.5])>






	参数

	
	x – A Tensor


	y – A Tensor


	name – A name for the operation (optional).






	返回

	A Tensor with same shape as input










	
tensorflow.dynamic_partition(data, partitions, num_partitions, name=None)

	Partitions data into num_partitions tensors using indices from partitions.

For each index tuple js of size partitions.ndim, the slice data[js, …]
becomes part of outputs[partitions[js]].  The slices with partitions[js] = i
are placed in outputs[i] in lexicographic order of js, and the first
dimension of outputs[i] is the number of entries in partitions equal to i.
In detail,


	```python

	outputs[i].shape = [sum(partitions == i)] + data.shape[partitions.ndim:]

outputs[i] = pack([data[js, …] for js if partitions[js] == i])





```

data.shape must start with partitions.shape.

For example:


	```python

	# Scalar partitions.
partitions = 1
num_partitions = 2
data = [10, 20]
outputs[0] = []  # Empty with shape [0, 2]
outputs[1] = [[10, 20]]

# Vector partitions.
partitions = [0, 0, 1, 1, 0]
num_partitions = 2
data = [10, 20, 30, 40, 50]
outputs[0] = [10, 20, 50]
outputs[1] = [30, 40]





```

See dynamic_stitch for an example on how to merge partitions back.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/DynamicPartition.png” alt>
</div>


	参数

	
	data – A Tensor.


	partitions – A Tensor of type int32.
Any shape.  Indices in the range [0, num_partitions).


	num_partitions – An int that is >= 1.
The number of partitions to output.


	name – A name for the operation (optional).






	返回

	A list of num_partitions Tensor objects with the same type as data.










	
tensorflow.dynamic_stitch(indices, data, name=None)

	Interleave the values from the data tensors into a single tensor.

Builds a merged tensor such that


	```python

	merged[indices[m][i, …, j], …] = data[m][i, …, j, …]





```

For example, if each indices[m] is scalar or vector, we have


	```python

	# Scalar indices:
merged[indices[m], …] = data[m][…]

# Vector indices:
merged[indices[m][i], …] = data[m][i, …]





```

Each data[i].shape must start with the corresponding indices[i].shape,
and the rest of data[i].shape must be constant w.r.t. i.  That is, we
must have data[i].shape = indices[i].shape + constant.  In terms of this
constant, the output shape is


merged.shape = [max(indices)] + constant




Values are merged in order, so if an index appears in both indices[m][i] and
indices[n][j] for (m,i) < (n,j) the slice data[n][j] will appear in the
merged result. If you do not need this guarantee, ParallelDynamicStitch might
perform better on some devices.

For example:


	```python

	indices[0] = 6
indices[1] = [4, 1]
indices[2] = [[5, 2], [0, 3]]
data[0] = [61, 62]
data[1] = [[41, 42], [11, 12]]
data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]]
merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42],


[51, 52], [61, 62]]








```

This method can be used to merge partitions created by dynamic_partition
as illustrated on the following example:


	```python

	# Apply function (increments x_i) on elements for which a certain condition
# apply (x_i != -1 in this example).
x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4])
condition_mask=tf.not_equal(x,tf.constant(-1.))
partitioned_data = tf.dynamic_partition(


x, tf.cast(condition_mask, tf.int32) , 2)




partitioned_data[1] = partitioned_data[1] + 1.0
condition_indices = tf.dynamic_partition(


tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2)




x = tf.dynamic_stitch(condition_indices, partitioned_data)
# Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain
# unchanged.





```

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/DynamicStitch.png” alt>
</div>


	参数

	
	indices – A list of at least 1 Tensor objects with type int32.


	data – A list with the same length as indices of Tensor objects with the same type.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as data.










	
tensorflow.edit_distance(hypothesis, truth, normalize=True, name='edit_distance')

	Computes the Levenshtein distance between sequences.

This operation takes variable-length sequences (hypothesis and truth),
each provided as a SparseTensor, and computes the Levenshtein distance.
You can normalize the edit distance by length of truth by setting
normalize to true.

For example, given the following input:

``python
# ‘hypothesis’ is a tensor of shape `[2, 1] with variable-length values:
#   (0,0) = [“a”]
#   (1,0) = [“b”]
hypothesis = tf.SparseTensor(



	[[0, 0, 0],

	[1, 0, 0]],





[“a”, “b”],
(2, 1, 1))




# ‘truth’ is a tensor of shape [2, 2] with variable-length values:
#   (0,0) = []
#   (0,1) = [“a”]
#   (1,0) = [“b”, “c”]
#   (1,1) = [“a”]
truth = tf.SparseTensor(



	[[0, 1, 0],

	[1, 0, 0],
[1, 0, 1],
[1, 1, 0]],





[“a”, “b”, “c”, “a”],
(2, 2, 2))




normalize = True
```

This operation would return the following:

``python
# ‘output’ is a tensor of shape `[2, 2] with edit distances normalized
# by ‘truth’ lengths.
output ==> [[inf, 1.0],  # (0,0): no truth, (0,1): no hypothesis


[0.5, 1.0]]  # (1,0): addition, (1,1): no hypothesis




```


	参数

	
	hypothesis – A SparseTensor containing hypothesis sequences.


	truth – A SparseTensor containing truth sequences.


	normalize – A bool. If True, normalizes the Levenshtein distance by
length of truth.


	name – A name for the operation (optional).






	返回

	A dense Tensor with rank R - 1, where R is the rank of the
SparseTensor inputs hypothesis and truth.



	Raises

	TypeError – If either hypothesis or truth are not a SparseTensor.










	
tensorflow.eig(tensor, name=None)

	Computes the eigen decomposition of a batch of matrices.

The eigenvalues
and eigenvectors for a non-Hermitian matrix in general are complex. The
eigenvectors are not guaranteed to be linearly independent.

Computes the eigenvalues and right eigenvectors of the innermost
N-by-N matrices in tensor such that
tensor[…,:,:] * v[…, :,i] = e[…, i] * v[…,:,i], for i=0…N-1.


	参数

	
	tensor – Tensor of shape […, N, N]. Only the lower triangular part of
each inner inner matrix is referenced.


	name – string, optional name of the operation.






	返回

	Eigenvalues. Shape is […, N]. Sorted in non-decreasing order.
v: Eigenvectors. Shape is […, N, N]. The columns of the inner most


matrices contain eigenvectors of the corresponding matrices in tensor








	返回类型

	e










	
tensorflow.eigvals(tensor, name=None)

	Computes the eigenvalues of one or more matrices.

Note: If your program backpropagates through this function, you should replace
it with a call to tf.linalg.eig (possibly ignoring the second output) to
avoid computing the eigen decomposition twice. This is because the
eigenvectors are used to compute the gradient w.r.t. the eigenvalues. See
_SelfAdjointEigV2Grad in linalg_grad.py.


	参数

	
	tensor – Tensor of shape […, N, N].


	name – string, optional name of the operation.






	返回

	
	Eigenvalues. Shape is […, N]. The vector e[…, :] contains the N

	eigenvalues of tensor[…, :, :].









	返回类型

	e










	
tensorflow.einsum(equation, *inputs, **kwargs)

	Tensor contraction over specified indices and outer product.

Einsum allows defining Tensors by defining their element-wise computation.
This computation is defined by equation, a shorthand form based on Einstein
summation. As an example, consider multiplying two matrices A and B to form a
matrix C.  The elements of C are given by:


	```

	C[i,k] = sum_j A[i,j] * B[j,k]





```

The corresponding equation is:


	```

	ij,jk->ik





```

In general, to convert the element-wise equation into the equation string,
use the following procedure (intermediate strings for matrix multiplication
example provided in parentheses):


	remove variable names, brackets, and commas, (ik = sum_j ij * jk)


	replace “*” with “,”, (ik = sum_j ij , jk)


	drop summation signs, and (ik = ij, jk)


	move the output to the right, while replacing “=” with “->”. (ij,jk->ik)




Many common operations can be expressed in this way.  For example:

```python
# Matrix multiplication
einsum(‘ij,jk->ik’, m0, m1)  # output[i,k] = sum_j m0[i,j] * m1[j, k]

# Dot product
einsum(‘i,i->’, u, v)  # output = sum_i u[i]*v[i]

# Outer product
einsum(‘i,j->ij’, u, v)  # output[i,j] = u[i]*v[j]

# Transpose
einsum(‘ij->ji’, m)  # output[j,i] = m[i,j]

# Trace
einsum(‘ii’, m)  # output[j,i] = trace(m) = sum_i m[i, i]

# Batch matrix multiplication
einsum(‘aij,ajk->aik’, s, t)  # out[a,i,k] = sum_j s[a,i,j] * t[a, j, k]
```

To enable and control broadcasting, use an ellipsis.  For example, to perform
batch matrix multiplication with NumPy-style broadcasting across the batch
dimensions, use:

`python
einsum('...ij,...jk->...ik', u, v)
`


	参数

	
	equation – a str describing the contraction, in the same format as
numpy.einsum.


	*inputs – the inputs to contract (each one a Tensor), whose shapes should
be consistent with equation.


	**kwargs – 
	optimize: Optimization strategy to use to find contraction path using
opt_einsum. Must be ‘greedy’, ‘optimal’, ‘branch-2’, ‘branch-all’ or


’auto’. (optional, default: ‘greedy’).






	name: A name for the operation (optional).











	返回

	The contracted Tensor, with shape determined by equation.



	Raises

	ValueError – If
- the format of equation is incorrect,
- number of inputs or their shapes are inconsistent with equation.










	
tensorflow.ensure_shape(x, shape, name=None)

	Updates the shape of a tensor and checks at runtime that the shape holds.

For example:
```python
x = tf.compat.v1.placeholder(tf.int32)
print(x.shape)
==> TensorShape(None)
y = x * 2
print(y.shape)
==> TensorShape(None)

y = tf.ensure_shape(y, (None, 3, 3))
print(y.shape)
==> TensorShape([Dimension(None), Dimension(3), Dimension(3)])


	with tf.compat.v1.Session() as sess:

	# Raises tf.errors.InvalidArgumentError, because the shape (3,) is not
# compatible with the shape (None, 3, 3)
sess.run(y, feed_dict={x: [1, 2, 3]})





```

NOTE: This differs from Tensor.set_shape in that it sets the static shape
of the resulting tensor and enforces it at runtime, raising an error if the
tensor’s runtime shape is incompatible with the specified shape.
Tensor.set_shape sets the static shape of the tensor without enforcing it
at runtime, which may result in inconsistencies between the statically-known
shape of tensors and the runtime value of tensors.


	参数

	
	x – A Tensor.


	shape – A TensorShape representing the shape of this tensor, a
TensorShapeProto, a list, a tuple, or None.


	name – A name for this operation (optional). Defaults to “EnsureShape”.






	返回

	A Tensor. Has the same type and contents as x. At runtime, raises a
tf.errors.InvalidArgumentError if shape is incompatible with the shape
of x.










	
tensorflow.equal(x, y, name=None)

	Returns the truth value of (x == y) element-wise.

Performs a [broadcast](
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) with the
arguments and then an element-wise equality comparison, returning a Tensor of
boolean values.

For example:

>>> x = tf.constant([2, 4])
>>> y = tf.constant(2)
>>> tf.math.equal(x, y)
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([ True,  False])>





>>> x = tf.constant([2, 4])
>>> y = tf.constant([2, 4])
>>> tf.math.equal(x, y)
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([ True,  True])>






	参数

	
	x – A tf.Tensor or tf.SparseTensor or tf.IndexedSlices.


	y – A tf.Tensor or tf.SparseTensor or tf.IndexedSlices.


	name – A name for the operation (optional).






	返回

	A tf.Tensor of type bool with the same size as that of x or y.



	Raises

	tf.errors.InvalidArgumentError – If shapes of arguments are incompatible










	
tensorflow.executing_eagerly()

	Checks whether the current thread has eager execution enabled.

Eager execution is enabled by default and this API returns True
in most of cases. However, this API might return False in the following use
cases.


	Executing inside tf.function, unless under tf.init_scope or
tf.config.experimental_run_functions_eagerly(True) is previously called.


	Executing inside a transformation function for tf.dataset.


	tf.compat.v1.disable_eager_execution() is called.




General case:

>>> print(tf.executing_eagerly())
True





Inside tf.function:

>>> @tf.function
... def fn():
...   with tf.init_scope():
...     print(tf.executing_eagerly())
...   print(tf.executing_eagerly())
>>> fn()
True
False





Inside tf.function after

tf.config.experimental_run_functions_eagerly(True) is called:
>>> tf.config.experimental_run_functions_eagerly(True)
>>> @tf.function
… def fn():
…   with tf.init_scope():
…     print(tf.executing_eagerly())
…   print(tf.executing_eagerly())
>>> fn()
True
True
>>> tf.config.experimental_run_functions_eagerly(False)

Inside a transformation function for tf.dataset:

>>> def data_fn(x):
...   print(tf.executing_eagerly())
...   return x
>>> dataset = tf.data.Dataset.range(100)
>>> dataset = dataset.map(data_fn)
False






	返回

	True if the current thread has eager execution enabled.










	
tensorflow.exp(x, name=None)

	Computes exponential of x element-wise.  \(y = e^x\).

This function computes the exponential of the input tensor element-wise.
i.e. math.exp(x) or \(e^x\), where x is the input tensor.
\(e\) denotes Euler’s number and is approximately equal to 2.718281.
Output is positive for any real input.

>>> x = tf.constant(2.0)
>>> tf.math.exp(x)
<tf.Tensor: shape=(), dtype=float32, numpy=7.389056>





>>> x = tf.constant([2.0, 8.0])
>>> tf.math.exp(x)
<tf.Tensor: shape=(2,), dtype=float32,
numpy=array([   7.389056, 2980.958   ], dtype=float32)>





For complex numbers, the exponential value is calculated as
\(e^{x+iy}={e^x}{e^{iy}}={e^x}{\cos(y)+i\sin(y)}\)

For 1+1j the value would be computed as:
\(e^1{\cos(1)+i\sin(1)} = 2.7182817 \times (0.5403023+0.84147096j)\)

>>> x = tf.constant(1 + 1j)
>>> tf.math.exp(x)
<tf.Tensor: shape=(), dtype=complex128,
numpy=(1.4686939399158851+2.2873552871788423j)>






	参数

	
	x – A tf.Tensor. Must be one of the following types: bfloat16, half,
float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A tf.Tensor. Has the same type as x.





@compatibility(numpy)
Equivalent to np.exp
@end_compatibility






	
tensorflow.expand_dims(input, axis, name=None)

	Returns a tensor with an additional dimension inserted at index axis.

Given a tensor input, this operation inserts a dimension of size 1 at the
dimension index axis of input’s shape. The dimension index axis starts
at zero; if you specify a negative number for axis it is counted backward
from the end.

This operation is useful if you want to add a batch dimension to a single
element. For example, if you have a single image of shape [height, width,
channels], you can make it a batch of one image with expand_dims(image, 0),
which will make the shape [1, height, width, channels].

Examples:

>>> t = [[1, 2, 3],[4, 5, 6]] # shape [2, 3]





>>> tf.expand_dims(t, 0)
<tf.Tensor: shape=(1, 2, 3), dtype=int32, numpy=
array([[[1, 2, 3],
        [4, 5, 6]]], dtype=int32)>





>>> tf.expand_dims(t, 1)
<tf.Tensor: shape=(2, 1, 3), dtype=int32, numpy=
array([[[1, 2, 3]],
       [[4, 5, 6]]], dtype=int32)>





>>> tf.expand_dims(t, 2)
<tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy=
array([[[1],
        [2],
        [3]],
       [[4],
        [5],
        [6]]], dtype=int32)>





>>> tf.expand_dims(t, -1) # Last dimension index. In this case, same as 2.
<tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy=
array([[[1],
        [2],
        [3]],
       [[4],
        [5],
        [6]]], dtype=int32)>





This operation is related to:


	tf.squeeze, which removes dimensions of size 1.


	tf.reshape, which provides more flexible reshaping capability





	参数

	
	input – A Tensor.


	axis – Integer specifying the dimension index at which to expand the
shape of input. Given an input of D dimensions, axis must be in range
[-(D+1), D] (inclusive).


	name – Optional string. The name of the output Tensor.






	返回

	A tensor with the same data as input, with an additional dimension
inserted at the index specified by axis.



	Raises

	
	ValueError – If axis is not specified.


	InvalidArgumentError – If axis is out of range [-(D+1), D].













	
tensorflow.extract_volume_patches(input, ksizes, strides, padding, name=None)

	Extract patches from input and put them in the “depth” output dimension. 3D extension of extract_image_patches.


	参数

	
	input – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
5-D Tensor with shape [batch, in_planes, in_rows, in_cols, depth].


	ksizes – A list of ints that has length >= 5.
The size of the sliding window for each dimension of input.


	strides – A list of ints that has length >= 5.
1-D of length 5. How far the centers of two consecutive patches are in
input. Must be: [1, stride_planes, stride_rows, stride_cols, 1].


	padding – A string from: “SAME”, “VALID”.
The type of padding algorithm to use.

We specify the size-related attributes as:


	```python

	ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1]
strides = [1, stride_planes, strides_rows, strides_cols, 1]





```




	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.eye(num_rows, num_columns=None, batch_shape=None, dtype=tf.float32, name=None)

	Construct an identity matrix, or a batch of matrices.

```python
# Construct one identity matrix.
tf.eye(2)
==> [[1., 0.],


[0., 1.]]




# Construct a batch of 3 identity matrices, each 2 x 2.
# batch_identity[i, :, :] is a 2 x 2 identity matrix, i = 0, 1, 2.
batch_identity = tf.eye(2, batch_shape=[3])

# Construct one 2 x 3 “identity” matrix
tf.eye(2, num_columns=3)
==> [[ 1.,  0.,  0.],


[ 0.,  1.,  0.]]




```


	参数

	
	num_rows – Non-negative int32 scalar Tensor giving the number of rows
in each batch matrix.


	num_columns – Optional non-negative int32 scalar Tensor giving the number
of columns in each batch matrix.  Defaults to num_rows.


	batch_shape – A list or tuple of Python integers or a 1-D int32 Tensor.
If provided, the returned Tensor will have leading batch dimensions of
this shape.


	dtype – The type of an element in the resulting Tensor


	name – A name for this Op.  Defaults to “eye”.






	返回

	A Tensor of shape batch_shape + [num_rows, num_columns]










	
tensorflow.fill(dims, value, name=None)

	Creates a tensor filled with a scalar value.

This operation creates a tensor of shape dims and fills it with value.

For example:

>>> tf.fill([2, 3], 9)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[9, 9, 9],
       [9, 9, 9]], dtype=int32)>





tf.fill evaluates at graph runtime and supports dynamic shapes based on
other runtime tf.Tensors, unlike tf.constant(value, shape=dims), which
embeds the value as a Const node.


	参数

	
	dims – A 1-D sequence of non-negative numbers. Represents the shape of the
output tf.Tensor. Entries should be of type: int32, int64.


	value – A value to fill the returned tf.Tensor.


	name – Optional string. The name of the output tf.Tensor.






	返回

	A tf.Tensor with shape dims and the same dtype as value.



	Raises

	
	InvalidArgumentError – dims contains negative entries.


	NotFoundError – dims contains non-integer entries.








@compatibility(numpy)
Similar to np.full. In numpy, more parameters are supported. Passing a
number argument as the shape (np.full(5, value)) is valid in numpy for
specifying a 1-D shaped result, while TensorFlow does not support this syntax.
@end_compatibility






	
tensorflow.fingerprint(data, method='farmhash64', name=None)

	Generates fingerprint values.

Generates fingerprint values of data.

Fingerprint op considers the first dimension of data as the batch dimension,
and output[i] contains the fingerprint value generated from contents in
data[i, …] for all i.

Fingerprint op writes fingerprint values as byte arrays. For example, the
default method farmhash64 generates a 64-bit fingerprint value at a time.
This 8-byte value is written out as an tf.uint8 array of size 8, in
little-endian order.

For example, suppose that data has data type tf.int32 and shape (2, 3, 4),
and that the fingerprint method is farmhash64. In this case, the output
shape is (2, 8), where 2 is the batch dimension size of data, and 8 is the
size of each fingerprint value in bytes. output[0, :] is generated from
12 integers in data[0, :, :] and similarly output[1, :] is generated from
other 12 integers in data[1, :, :].

Note that this op fingerprints the raw underlying buffer, and it does not
fingerprint Tensor’s metadata such as data type and/or shape. For example, the
fingerprint values are invariant under reshapes and bitcasts as long as the
batch dimension remain the same:

`python
tf.fingerprint(data) == tf.fingerprint(tf.reshape(data, ...))
tf.fingerprint(data) == tf.fingerprint(tf.bitcast(data, ...))
`

For string data, one should expect tf.fingerprint(data) !=
tf.fingerprint(tf.string.reduce_join(data)) in general.


	参数

	
	data – A Tensor. Must have rank 1 or higher.


	method – A Tensor of type tf.string. Fingerprint method used by this op.
Currently available method is farmhash64.


	name – A name for the operation (optional).






	返回

	A two-dimensional Tensor of type tf.uint8. The first dimension equals to
data’s first dimension, and the second dimension size depends on the
fingerprint algorithm.










	
tensorflow.floor(x, name=None)

	Returns element-wise largest integer not greater than x.


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.foldl(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None)

	foldl on the list of tensors unpacked from elems on dimension 0. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.foldl(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.foldl(fn, elems))

This foldl operator repeatedly applies the callable fn to a sequence
of elements from first to last. The elements are made of the tensors
unpacked from elems on dimension 0. The callable fn takes two tensors as
arguments. The first argument is the accumulated value computed from the
preceding invocation of fn, and the second is the value at the current
position of elems. If initializer is None, elems must contain at least
one element, and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is fn(initializer, values[0]).shape`.

This method also allows multi-arity elems and output of fn.  If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension.  The signature of fn may
match the structure of elems.  That is, if elems is
(t1, [t2, t3, [t4, t5]]), then an appropriate signature for fn is:
fn = lambda (t1, [t2, t3, [t4, t5]]):.


	参数

	
	fn – The callable to be performed.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension.  The nested sequence of the
resulting slices will be the first argument to fn.


	initializer – (optional) A tensor or (possibly nested) sequence of tensors,
as the initial value for the accumulator.


	parallel_iterations – (optional) The number of iterations allowed to run in
parallel.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – (optional) True enables GPU-CPU memory swapping.


	name – (optional) Name prefix for the returned tensors.






	返回

	A tensor or (possibly nested) sequence of tensors, resulting from applying
fn consecutively to the list of tensors unpacked from elems, from first
to last.



	Raises

	TypeError – if fn is not callable.





Example

`python
elems = tf.constant([1, 2, 3, 4, 5, 6])
sum = foldl(lambda a, x: a + x, elems)
# sum == 21
`






	
tensorflow.foldr(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None)

	foldr on the list of tensors unpacked from elems on dimension 0. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.foldr(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.foldr(fn, elems))

This foldr operator repeatedly applies the callable fn to a sequence
of elements from last to first. The elements are made of the tensors
unpacked from elems. The callable fn takes two tensors as arguments.
The first argument is the accumulated value computed from the preceding
invocation of fn, and the second is the value at the current position of
elems. If initializer is None, elems must contain at least one element,
and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is fn(initializer, values[0]).shape.

This method also allows multi-arity elems and output of fn.  If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension.  The signature of fn may
match the structure of elems.  That is, if elems is
(t1, [t2, t3, [t4, t5]]), then an appropriate signature for fn is:
fn = lambda (t1, [t2, t3, [t4, t5]]):.


	参数

	
	fn – The callable to be performed.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension.  The nested sequence of the
resulting slices will be the first argument to fn.


	initializer – (optional) A tensor or (possibly nested) sequence of tensors,
as the initial value for the accumulator.


	parallel_iterations – (optional) The number of iterations allowed to run in
parallel.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – (optional) True enables GPU-CPU memory swapping.


	name – (optional) Name prefix for the returned tensors.






	返回

	A tensor or (possibly nested) sequence of tensors, resulting from applying
fn consecutively to the list of tensors unpacked from elems, from last
to first.



	Raises

	TypeError – if fn is not callable.





Example

`python
elems = [1, 2, 3, 4, 5, 6]
sum = foldr(lambda a, x: a + x, elems)
# sum == 21
`






	
tensorflow.function(func=None, input_signature=None, autograph=True, experimental_implements=None, experimental_autograph_options=None, experimental_relax_shapes=False, experimental_compile=None)

	Compiles a function into a callable TensorFlow graph.

tf.function constructs a callable that executes a TensorFlow graph
(tf.Graph) created by trace-compiling the TensorFlow operations in func,
effectively executing func as a TensorFlow graph.

Example usage:

>>> @tf.function
... def f(x, y):
...   return x ** 2 + y
>>> x = tf.constant([2, 3])
>>> y = tf.constant([3, -2])
>>> f(x, y)
<tf.Tensor: ... numpy=array([7, 7], ...)>





_Features_

func may use data-dependent control flow, including if, for, while
break, continue and return statements:

>>> @tf.function
... def f(x):
...   if tf.reduce_sum(x) > 0:
...     return x * x
...   else:
...     return -x // 2
>>> f(tf.constant(-2))
<tf.Tensor: ... numpy=1>





func’s closure may include tf.Tensor and tf.Variable objects:

>>> @tf.function
... def f():
...   return x ** 2 + y
>>> x = tf.constant([-2, -3])
>>> y = tf.Variable([3, -2])
>>> f()
<tf.Tensor: ... numpy=array([7, 7], ...)>





func may also use ops with side effects, such as tf.print, tf.Variable
and others:

>>> v = tf.Variable(1)
>>> @tf.function
... def f(x):
...   for i in tf.range(x):
...     v.assign_add(i)
>>> f(3)
>>> v
<tf.Variable ... numpy=4>





Important: Any Python side-effects (appending to a list, printing with
print, etc) will only happen once, when func is traced. To have
side-effects executed into your tf.function they need to be written
as TF ops:

>>> l = []
>>> @tf.function
... def f(x):
...   for i in x:
...     l.append(i + 1)    # Caution! Will only happen once when tracing
>>> f(tf.constant([1, 2, 3]))
>>> l
[<tf.Tensor ...>]





Instead, use TensorFlow collections like tf.TensorArray:

>>> @tf.function
... def f(x):
...   ta = tf.TensorArray(dtype=tf.int32, size=0, dynamic_size=True)
...   for i in range(len(x)):
...     ta = ta.write(i, x[i] + 1)
...   return ta.stack()
>>> f(tf.constant([1, 2, 3]))
<tf.Tensor: ..., numpy=array([2, 3, 4], ...)>





tf.function is polymorphic_

Internally, tf.function can build more than one graph, to support arguments
with different data types or shapes, since TensorFlow can build more
efficient graphs that are specialized on shapes and dtypes. tf.function
also treats any pure Python value as opaque objects, and builds a separate
graph for each set of Python arguments that it encounters.

To obtain an individual graph, use the get_concrete_function method of
the callable created by tf.function. It can be called with the same
arguments as func and returns a special tf.Graph object:

>>> @tf.function
... def f(x):
...   return x + 1
>>> isinstance(f.get_concrete_function(1).graph, tf.Graph)
True





Caution: Passing python scalars or lists as arguments to tf.function will
always build a new graph. To avoid this, pass numeric arguments as Tensors
whenever possible:

>>> @tf.function
... def f(x):
...   return tf.abs(x)
>>> f1 = f.get_concrete_function(1)
>>> f2 = f.get_concrete_function(2)  # Slow - builds new graph
>>> f1 is f2
False
>>> f1 = f.get_concrete_function(tf.constant(1))
>>> f2 = f.get_concrete_function(tf.constant(2))  # Fast - reuses f1
>>> f1 is f2
True





Python numerical arguments should only be used when they take few distinct
values, such as hyperparameters like the number of layers in a neural network.

_Input signatures_

For Tensor arguments, tf.function instantiates a separate graph for every
unique set of input shapes and datatypes. The example below creates two
separate graphs, each specialized to a different shape:

>>> @tf.function
... def f(x):
...   return x + 1
>>> vector = tf.constant([1.0, 1.0])
>>> matrix = tf.constant([[3.0]])
>>> f.get_concrete_function(vector) is f.get_concrete_function(matrix)
False





An “input signature” can be optionally provided to tf.function to control
the graphs traced. The input signature specifies the shape and type of each
Tensor argument to the function using a tf.TensorSpec object. More general
shapes can be used. This is useful to avoid creating multiple graphs when
Tensors have dynamic shapes. It also restricts the shape and datatype of
Tensors that can be used:

>>> @tf.function(
...     input_signature=[tf.TensorSpec(shape=None, dtype=tf.float32)])
... def f(x):
...   return x + 1
>>> vector = tf.constant([1.0, 1.0])
>>> matrix = tf.constant([[3.0]])
>>> f.get_concrete_function(vector) is f.get_concrete_function(matrix)
True





_Variables may only be created once_

tf.function only allows creating new tf.Variable objects when it is called
for the first time:

>>> class MyModule(tf.Module):
...   def __init__(self):
...     self.v = None
...
...   @tf.function
...   def call(self, x):
...     if self.v is None:
...       self.v = tf.Variable(tf.ones_like(x))
...     return self.v * x





In general, it is recommended to create stateful objects like tf.Variable
outside of tf.function and passing them as arguments.


	参数

	
	func – the function to be compiled. If func is None, tf.function returns
a decorator that can be invoked with a single argument - func. In other
words, tf.function(input_signature=…)(func) is equivalent to
tf.function(func, input_signature=…). The former can be used as
decorator.


	input_signature – A possibly nested sequence of tf.TensorSpec objects
specifying the shapes and dtypes of the Tensors that will be supplied to
this function. If None, a separate function is instantiated for each
inferred input signature.  If input_signature is specified, every input to
func must be a Tensor, and func cannot accept **kwargs.


	autograph – Whether autograph should be applied on func before tracing a
graph. Data-dependent control flow requires autograph=True. For more
information, see the [tf.function and AutoGraph guide](
https://www.tensorflow.org/guide/function).


	experimental_implements – If provided, contains a name of a “known” function
this implements. For example “mycompany.my_recurrent_cell”.
This is stored as an attribute in inference function,
which can then be detected when processing serialized function.
See [standardizing composite ops](https://github.com/tensorflow/community/blob/master/rfcs/20190610-standardizing-composite_ops.md)  # pylint: disable=line-too-long
for details.  For an example of utilizing this attribute see this
[example](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/transforms/prepare_composite_functions_tf.cc)
The code above automatically detects and substitutes function that
implements “embedded_matmul” and allows TFLite to substitute its own
implementations. For instance, a tensorflow user can use this


attribute to mark that their function also implements




embedded_matmul (perhaps more efficiently!)
by specifying it using this parameter:
@tf.function(experimental_implements=”embedded_matmul”)




	experimental_autograph_options – Optional tuple of
tf.autograph.experimental.Feature values.


	experimental_relax_shapes – When True, tf.function may generate fewer,
graphs that are less specialized on input shapes.


	experimental_compile – If True, the function is always compiled by
[XLA](https://www.tensorflow.org/xla). XLA may be more efficient in some
cases (e.g. TPU, XLA_GPU, dense tensor computations).






	返回

	If func is not None, returns a callable that will execute the compiled
function (and return zero or more tf.Tensor objects).
If func is None, returns a decorator that, when invoked with a single
func argument, returns a callable equivalent to the case above.



	Raises

	
	ValueError when attempting to use experimental_compile, but XLA support is


	not enabled.













	
tensorflow.gather(params, indices, validate_indices=None, axis=None, batch_dims=0, name=None)

	Gather slices from params axis axis according to indices.

Gather slices from params axis axis according to indices.  indices must
be an integer tensor of any dimension (usually 0-D or 1-D).

For 0-D (scalar) indices:

$$begin{align*}
output[p_0, …, p_{axis-1}, &&          &&& p_{axis + 1}, …, p_{N-1}] = \
params[p_0, …, p_{axis-1}, && indices, &&& p_{axis + 1}, …, p_{N-1}]
end{align*}$$

Where N = ndims(params).

For 1-D (vector) indices with batch_dims=0:

$$begin{align*}
output[p_0, …, p_{axis-1}, &&         &i,  &&p_{axis + 1}, …, p_{N-1}] =\
params[p_0, …, p_{axis-1}, && indices[&i], &&p_{axis + 1}, …, p_{N-1}]
end{align*}$$

In the general case, produces an output tensor where:

$$begin{align*}
output[p_0,             &…, p_{axis-1},                       &


&i_{B},           …, i_{M-1},                          &
p_{axis + 1},    &…, p_{N-1}]                          = \





	params[p_0,             &…, p_{axis-1},                       &

	indices[p_0, …, p_{B-1}, &i_{B}, …, i_{M-1}],        &
p_{axis + 1},    &…, p_{N-1}]





end{align*}$$

Where N = ndims(params), M = ndims(indices), and B = batch_dims.
Note that params.shape[:batch_dims] must be identical to
indices.shape[:batch_dims].

The shape of the output tensor is:

> output.shape = params.shape[:axis] + indices.shape[batch_dims:] +
> params.shape[axis + 1:].

Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, a 0 is stored in the corresponding
output value.

See also tf.gather_nd.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/Gather.png”
alt>
</div>


	参数

	
	params – The Tensor from which to gather values. Must be at least rank
axis + 1.


	indices – The index Tensor.  Must be one of the following types: int32,
int64. Must be in range [0, params.shape[axis]).


	validate_indices – Deprecated, does nothing.


	axis – A Tensor. Must be one of the following types: int32, int64. The
axis in params to gather indices from. Must be greater than or equal
to batch_dims.  Defaults to the first non-batch dimension. Supports
negative indexes.


	batch_dims – An integer.  The number of batch dimensions.  Must be less
than or equal to rank(indices).


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as params.










	
tensorflow.gather_nd(params, indices, batch_dims=0, name=None)

	Gather slices from params into a Tensor with shape specified by indices.

indices is an K-dimensional integer tensor, best thought of as a
(K-1)-dimensional tensor of indices into params, where each element defines
a slice of params:


output[\(i_0, …, i_{K-2}\)] = params[indices[\(i_0, …, i_{K-2}\)]]




Whereas in tf.gather indices defines slices into the first
dimension of params, in tf.gather_nd, indices defines slices into the
first N dimensions of params, where N = indices.shape[-1].

The last dimension of indices can be at most the rank of
params:


indices.shape[-1] <= params.rank




The last dimension of indices corresponds to elements
(if indices.shape[-1] == params.rank) or slices
(if indices.shape[-1] < params.rank) along dimension indices.shape[-1]
of params.  The output tensor has shape


indices.shape[:-1] + params.shape[indices.shape[-1]:]




Additionally both ‘params’ and ‘indices’ can have M leading batch
dimensions that exactly match. In this case ‘batch_dims’ must be M.

Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, a 0 is stored in the
corresponding output value.

Some examples below.

Simple indexing into a matrix:


	```python

	indices = [[0, 0], [1, 1]]
params = [[‘a’, ‘b’], [‘c’, ‘d’]]
output = [‘a’, ‘d’]





```

Slice indexing into a matrix:


	```python

	indices = [[1], [0]]
params = [[‘a’, ‘b’], [‘c’, ‘d’]]
output = [[‘c’, ‘d’], [‘a’, ‘b’]]





```

Indexing into a 3-tensor:


	```python

	indices = [[1]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]

indices = [[0, 1], [1, 0]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[‘c0’, ‘d0’], [‘a1’, ‘b1’]]

indices = [[0, 0, 1], [1, 0, 1]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [‘b0’, ‘b1’]





```

The examples below are for the case when only indices have leading extra
dimensions. If both ‘params’ and ‘indices’ have leading batch dimensions, use
the ‘batch_dims’ parameter to run gather_nd in batch mode.

Batched indexing into a matrix:


	```python

	indices = [[[0, 0]], [[0, 1]]]
params = [[‘a’, ‘b’], [‘c’, ‘d’]]
output = [[‘a’], [‘b’]]





```

Batched slice indexing into a matrix:


	```python

	indices = [[[1]], [[0]]]
params = [[‘a’, ‘b’], [‘c’, ‘d’]]
output = [[[‘c’, ‘d’]], [[‘a’, ‘b’]]]





```

Batched indexing into a 3-tensor:


	```python

	indices = [[[1]], [[0]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]





	output = [[[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]],

	[[[‘a0’, ‘b0’], [‘c0’, ‘d0’]]]]





indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]





	output = [[[‘c0’, ‘d0’], [‘a1’, ‘b1’]],

	[[‘a0’, ‘b0’], [‘c1’, ‘d1’]]]





indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[‘b0’, ‘b1’], [‘d0’, ‘c1’]]





```

Examples with batched ‘params’ and ‘indices’:


	```python

	batch_dims = 1
indices = [[1], [0]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[‘c0’, ‘d0’], [‘a1’, ‘b1’]]

batch_dims = 1
indices = [[[1]], [[0]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[[‘c0’, ‘d0’]], [[‘a1’, ‘b1’]]]

batch_dims = 1
indices = [[[1, 0]], [[0, 1]]]
params = [[[‘a0’, ‘b0’], [‘c0’, ‘d0’]],


[[‘a1’, ‘b1’], [‘c1’, ‘d1’]]]




output = [[‘c0’], [‘b1’]]





```

See also tf.gather.


	参数

	
	params – A Tensor. The tensor from which to gather values.


	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	name – A name for the operation (optional).


	batch_dims – An integer or a scalar ‘Tensor’. The number of batch dimensions.






	返回

	A Tensor. Has the same type as params.










	
tensorflow.get_logger()

	Return TF logger instance.






	
tensorflow.get_static_value(tensor, partial=False)

	Returns the constant value of the given tensor, if efficiently calculable.

This function attempts to partially evaluate the given tensor, and
returns its value as a numpy ndarray if this succeeds.

Compatibility(V1): If constant_value(tensor) returns a non-None result, it
will no longer be possible to feed a different value for tensor. This allows
the result of this function to influence the graph that is constructed, and
permits static shape optimizations.


	参数

	
	tensor – The Tensor to be evaluated.


	partial – If True, the returned numpy array is allowed to have partially
evaluated values. Values that can’t be evaluated will be None.






	返回

	A numpy ndarray containing the constant value of the given tensor,
or None if it cannot be calculated.



	Raises

	TypeError – if tensor is not an ops.Tensor.










	
tensorflow.grad_pass_through(f)

	Creates a grad-pass-through op with the forward behavior provided in f.

Use this function to wrap any op, maintaining its behavior in the forward
pass, but replacing the original op in the backward graph with an identity.
For example:

```python
x = tf.Variable(1.0, name=”x”)
z = tf.Variable(3.0, name=”z”)


	with tf.GradientTape() as tape:

	# y will evaluate to 9.0
y = tf.grad_pass_through(x.assign)(z**2)





# grads will evaluate to 6.0
grads = tape.gradient(y, z)
```

Another example is a ‘differentiable’ moving average approximation, where
gradients are allowed to flow into the last value fed to the moving average,
but the moving average is still used for the forward pass:

```python
x = … # Some scalar value
# A moving average object, we don’t need to know how this is implemented
moving_average = MovingAverage()
with backprop.GradientTape() as tape:


# mavg_x will evaluate to the current running average value
mavg_x = tf.grad_pass_through(moving_average)(x)




grads = tape.gradient(mavg_x, x) # grads will evaluate to 1.0
```


	参数

	f – function f(*x) that returns a Tensor or nested structure of Tensor
outputs.



	返回

	A function h(x) which returns the same values as f(x) and whose
gradients are the same as those of an identity function.










	
tensorflow.gradients(ys, xs, grad_ys=None, name='gradients', gate_gradients=False, aggregation_method=None, stop_gradients=None, unconnected_gradients=<UnconnectedGradients.NONE: 'none'>)

	Constructs symbolic derivatives of sum of ys w.r.t. x in xs.

ys and xs are each a Tensor or a list of tensors.  grad_ys
is a list of Tensor, holding the gradients received by the
ys. The list must be the same length as ys.

gradients() adds ops to the graph to output the derivatives of ys with
respect to xs.  It returns a list of Tensor of length len(xs) where
each tensor is the sum(dy/dx) for y in ys and for x in xs.

grad_ys is a list of tensors of the same length as ys that holds
the initial gradients for each y in ys.  When grad_ys is None,
we fill in a tensor of ‘1’s of the shape of y for each y in ys.  A
user can provide their own initial grad_ys to compute the
derivatives using a different initial gradient for each y (e.g., if
one wanted to weight the gradient differently for each value in
each y).

stop_gradients is a Tensor or a list of tensors to be considered constant
with respect to all xs. These tensors will not be backpropagated through,
as though they had been explicitly disconnected using stop_gradient.  Among
other things, this allows computation of partial derivatives as opposed to
total derivatives. For example:

`python
a = tf.constant(0.)
b = 2 * a
g = tf.gradients(a + b, [a, b], stop_gradients=[a, b])
`

Here the partial derivatives g evaluate to [1.0, 1.0], compared to the
total derivatives tf.gradients(a + b, [a, b]), which take into account the
influence of a on b and evaluate to [3.0, 1.0].  Note that the above is
equivalent to:

`python
a = tf.stop_gradient(tf.constant(0.))
b = tf.stop_gradient(2 * a)
g = tf.gradients(a + b, [a, b])
`

stop_gradients provides a way of stopping gradient after the graph has
already been constructed, as compared to tf.stop_gradient which is used
during graph construction.  When the two approaches are combined,
backpropagation stops at both tf.stop_gradient nodes and nodes in
stop_gradients, whichever is encountered first.

All integer tensors are considered constant with respect to all xs, as if
they were included in stop_gradients.

unconnected_gradients determines the value returned for each x in xs if it
is unconnected in the graph to ys. By default this is None to safeguard
against errors. Mathematically these gradients are zero which can be requested
using the ‘zero’ option. tf.UnconnectedGradients provides the
following options and behaviors:

```python
a = tf.ones([1, 2])
b = tf.ones([3, 1])
g1 = tf.gradients([b], [a], unconnected_gradients=’none’)
sess.run(g1)  # [None]

g2 = tf.gradients([b], [a], unconnected_gradients=’zero’)
sess.run(g2)  # [array([[0., 0.]], dtype=float32)]
```

Let us take one practical example which comes during the back propogation
phase. This function is used to evaluate the derivatives of the cost function
with respect to Weights Ws and Biases bs. Below sample implementation
provides the exaplantion of what it is actually used for :

`python
Ws = tf.constant(0.)
bs = 2 * Ws
cost = Ws + bs  # This is just an example. So, please ignore the formulas.
g = tf.gradients(cost, [Ws, bs])
dCost_dW, dCost_db = g
`


	参数

	
	ys – A Tensor or list of tensors to be differentiated.


	xs – A Tensor or list of tensors to be used for differentiation.


	grad_ys – Optional. A Tensor or list of tensors the same size as
ys and holding the gradients computed for each y in ys.


	name – Optional name to use for grouping all the gradient ops together.
defaults to ‘gradients’.


	gate_gradients – If True, add a tuple around the gradients returned
for an operations.  This avoids some race conditions.


	aggregation_method – Specifies the method used to combine gradient terms.
Accepted values are constants defined in the class AggregationMethod.


	stop_gradients – Optional. A Tensor or list of tensors not to differentiate
through.


	unconnected_gradients – Optional. Specifies the gradient value returned when
the given input tensors are unconnected. Accepted values are constants
defined in the class tf.UnconnectedGradients and the default value is
none.






	返回

	A list of Tensor of length len(xs) where each tensor is the sum(dy/dx)
for y in ys and for x in xs.



	Raises

	
	LookupError – if one of the operations between x and y does not
have a registered gradient function.


	ValueError – if the arguments are invalid.


	RuntimeError – if called in Eager mode.













	
tensorflow.greater(x, y, name=None)

	Returns the truth value of (x > y) element-wise.

NOTE: math.greater supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

Example:

```python
x = tf.constant([5, 4, 6])
y = tf.constant([5, 2, 5])
tf.math.greater(x, y) ==> [False, True, True]

x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.greater(x, y) ==> [False, False, True]
```


	参数

	
	x – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.greater_equal(x, y, name=None)

	Returns the truth value of (x >= y) element-wise.

NOTE: math.greater_equal supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

Example:

```python
x = tf.constant([5, 4, 6, 7])
y = tf.constant([5, 2, 5, 10])
tf.math.greater_equal(x, y) ==> [True, True, True, False]

x = tf.constant([5, 4, 6, 7])
y = tf.constant([5])
tf.math.greater_equal(x, y) ==> [True, False, True, True]
```


	参数

	
	x – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.group(*inputs, **kwargs)

	Create an op that groups multiple operations.

When this op finishes, all ops in inputs have finished. This op has no
output.

See also tf.tuple and
tf.control_dependencies.


	参数

	
	*inputs – Zero or more tensors to group.


	name – A name for this operation (optional).






	返回

	An Operation that executes all its inputs.



	Raises

	ValueError – If an unknown keyword argument is provided.










	
tensorflow.guarantee_const(input, name=None)

	Gives a guarantee to the TF runtime that the input tensor is a constant.

The runtime is then free to make optimizations based on this.

Only accepts value typed tensors as inputs and rejects resource variable handles
as input.

Returns the input tensor without modification.


	参数

	
	input – A Tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.hessians(ys, xs, gate_gradients=False, aggregation_method=None, name='hessians')

	Constructs the Hessian of sum of ys with respect to x in xs.

hessians() adds ops to the graph to output the Hessian matrix of ys
with respect to xs.  It returns a list of Tensor of length len(xs)
where each tensor is the Hessian of sum(ys).

The Hessian is a matrix of second-order partial derivatives of a scalar
tensor (see https://en.wikipedia.org/wiki/Hessian_matrix for more details).


	参数

	
	ys – A Tensor or list of tensors to be differentiated.


	xs – A Tensor or list of tensors to be used for differentiation.


	name – Optional name to use for grouping all the gradient ops together.
defaults to ‘hessians’.


	colocate_gradients_with_ops – See gradients() documentation for details.


	gate_gradients – See gradients() documentation for details.


	aggregation_method – See gradients() documentation for details.






	返回

	A list of Hessian matrices of sum(ys) for each x in xs.



	Raises

	LookupError – if one of the operations between xs and ys does not
have a registered gradient function.










	
tensorflow.histogram_fixed_width(values, value_range, nbins=100, dtype=tf.int32, name=None)

	Return histogram of values.

Given the tensor values, this operation returns a rank 1 histogram counting
the number of entries in values that fell into every bin.  The bins are
equal width and determined by the arguments value_range and nbins.


	参数

	
	values – Numeric Tensor.


	value_range – Shape [2] Tensor of same dtype as values.
values <= value_range[0] will be mapped to hist[0],
values >= value_range[1] will be mapped to hist[-1].


	nbins – Scalar int32 Tensor.  Number of histogram bins.


	dtype – dtype for returned histogram.


	name – A name for this operation (defaults to ‘histogram_fixed_width’).






	返回

	A 1-D Tensor holding histogram of values.



	Raises

	
	TypeError – If any unsupported dtype is provided.


	tf.errors.InvalidArgumentError – If value_range does not
satisfy value_range[0] < value_range[1].








Examples:

```python
# Bins will be:  (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
nbins = 5
value_range = [0.0, 5.0]
new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]


	with tf.compat.v1.get_default_session() as sess:

	hist = tf.histogram_fixed_width(new_values, value_range, nbins=5)
variables.global_variables_initializer().run()
sess.run(hist) => [2, 1, 1, 0, 2]





```






	
tensorflow.histogram_fixed_width_bins(values, value_range, nbins=100, dtype=tf.int32, name=None)

	Bins the given values for use in a histogram.

Given the tensor values, this operation returns a rank 1 Tensor
representing the indices of a histogram into which each element
of values would be binned. The bins are equal width and
determined by the arguments value_range and nbins.


	参数

	
	values – Numeric Tensor.


	value_range – Shape [2] Tensor of same dtype as values.
values <= value_range[0] will be mapped to hist[0],
values >= value_range[1] will be mapped to hist[-1].


	nbins – Scalar int32 Tensor.  Number of histogram bins.


	dtype – dtype for returned histogram.


	name – A name for this operation (defaults to ‘histogram_fixed_width’).






	返回

	A Tensor holding the indices of the binned values whose shape matches
values.



	Raises

	
	TypeError – If any unsupported dtype is provided.


	tf.errors.InvalidArgumentError – If value_range does not
satisfy value_range[0] < value_range[1].








Examples:

```python
# Bins will be:  (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
nbins = 5
value_range = [0.0, 5.0]
new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]


	with tf.compat.v1.get_default_session() as sess:

	indices = tf.histogram_fixed_width_bins(new_values, value_range, nbins=5)
variables.global_variables_initializer().run()
sess.run(indices) # [0, 0, 1, 2, 4, 4]





```






	
tensorflow.identity(input, name=None)

	Return a Tensor with the same shape and contents as input.

The return value is not the same Tensor as the original, but contains the same
values.  This operation is fast when used on the same device.

For example:

>>> a = tf.constant([0.78])
>>> a_identity = tf.identity(a)
>>> a.numpy()
array([0.78], dtype=float32)
>>> a_identity.numpy()
array([0.78], dtype=float32)





Calling tf.identity on a variable will make a Tensor that represents the
value of that variable at the time it is called. This is equivalent to calling
<variable>.read_value().

>>> a = tf.Variable(5)
>>> a_identity = tf.identity(a)
>>> a.assign_add(1)
<tf.Variable ... shape=() dtype=int32, numpy=6>
>>> a.numpy()
6
>>> a_identity.numpy()
5






	参数

	
	input – A Tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.identity_n(input, name=None)

	Returns a list of tensors with the same shapes and contents as the input

tensors.

This op can be used to override the gradient for complicated functions. For
example, suppose y = f(x) and we wish to apply a custom function g for backprop
such that dx = g(dy). In Python,

```python
with tf.get_default_graph().gradient_override_map(



{‘IdentityN’: ‘OverrideGradientWithG’}):




y, _ = identity_n([f(x), x])




@tf.RegisterGradient(‘OverrideGradientWithG’)
def ApplyG(op, dy, _):


return [None, g(dy)]  # Do not backprop to f(x).




```


	参数

	
	input – A list of Tensor objects.


	name – A name for the operation (optional).






	返回

	A list of Tensor objects. Has the same type as input.










	
tensorflow.import_graph_def(graph_def, input_map=None, return_elements=None, name=None, op_dict=None, producer_op_list=None)

	Imports the graph from graph_def into the current default Graph. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (op_dict). They will be removed in a future version.
Instructions for updating:
Please file an issue at https://github.com/tensorflow/tensorflow/issues if you depend on this feature.

This function provides a way to import a serialized TensorFlow
[GraphDef](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
protocol buffer, and extract individual objects in the GraphDef as
tf.Tensor and tf.Operation objects. Once extracted,
these objects are placed into the current default Graph. See
tf.Graph.as_graph_def for a way to create a GraphDef
proto.


	参数

	
	graph_def – A GraphDef proto containing operations to be imported into
the default graph.


	input_map – A dictionary mapping input names (as strings) in graph_def
to Tensor objects. The values of the named input tensors in the
imported graph will be re-mapped to the respective Tensor values.


	return_elements – A list of strings containing operation names in
graph_def that will be returned as Operation objects; and/or
tensor names in graph_def that will be returned as Tensor objects.


	name – (Optional.) A prefix that will be prepended to the names in
graph_def. Note that this does not apply to imported function names.
Defaults to “import”.


	op_dict – (Optional.) Deprecated, do not use.


	producer_op_list – (Optional.) An OpList proto with the (possibly stripped)
list of OpDef`s used by the producer of the graph. If provided,
unrecognized attrs for ops in `graph_def that have their default value
according to producer_op_list will be removed. This will allow some more
`GraphDef`s produced by later binaries to be accepted by earlier binaries.






	返回

	A list of Operation and/or Tensor objects from the imported graph,
corresponding to the names in return_elements,
and None if returns_elements is None.



	Raises

	
	TypeError – If graph_def is not a GraphDef proto,
input_map is not a dictionary mapping strings to Tensor objects,
or return_elements is not a list of strings.


	ValueError – If input_map, or return_elements contains names that
do not appear in graph_def, or graph_def is not well-formed (e.g.
it refers to an unknown tensor).













	
tensorflow.init_scope()

	A context manager that lifts ops out of control-flow scopes and function-building graphs.

There is often a need to lift variable initialization ops out of control-flow
scopes, function-building graphs, and gradient tapes. Entering an
init_scope is a mechanism for satisfying these desiderata. In particular,
entering an init_scope has three effects:



	All control dependencies are cleared the moment the scope is entered;
this is equivalent to entering the context manager returned from
control_dependencies(None), which has the side-effect of exiting
control-flow scopes like tf.cond and tf.while_loop.


	All operations that are created while the scope is active are lifted
into the lowest context on the context_stack that is not building a
graph function. Here, a context is defined as either a graph or an eager
context. Every context switch, i.e., every installation of a graph as
the default graph and every switch into eager mode, is logged in a
thread-local stack called context_switches; the log entry for a
context switch is popped from the stack when the context is exited.
Entering an init_scope is equivalent to crawling up
context_switches, finding the first context that is not building a
graph function, and entering it. A caveat is that if graph mode is
enabled but the default graph stack is empty, then entering an
init_scope will simply install a fresh graph as the default one.


	The gradient tape is paused while the scope is active.







When eager execution is enabled, code inside an init_scope block runs with
eager execution enabled even when tracing a tf.function. For example:

```python
tf.compat.v1.enable_eager_execution()

@tf.function
def func():


# A function constructs TensorFlow graphs,
# it does not execute eagerly.
assert not tf.executing_eagerly()
with tf.init_scope():


# Initialization runs with eager execution enabled
assert tf.executing_eagerly()







```


	Raises

	RuntimeError – if graph state is incompatible with this initialization.










	
tensorflow.is_tensor(x)

	Checks whether x is a tensor or “tensor-like”.

If is_tensor(x) returns True, it is safe to assume that x is a tensor or
can be converted to a tensor using ops.convert_to_tensor(x).

Usage example:

>>> tf.is_tensor(tf.constant([[1,2,3],[4,5,6],[7,8,9]]))
True
>>> tf.is_tensor("Hello World")
False






	参数

	x – A python object to check.



	返回

	True if x is a tensor or “tensor-like”, False if not.










	
tensorflow.less(x, y, name=None)

	Returns the truth value of (x < y) element-wise.

NOTE: math.less supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

Example:

```python
x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.less(x, y) ==> [False, True, False]

x = tf.constant([5, 4, 6])
y = tf.constant([5, 6, 7])
tf.math.less(x, y) ==> [False, True, True]
```


	参数

	
	x – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.less_equal(x, y, name=None)

	Returns the truth value of (x <= y) element-wise.

NOTE: math.less_equal supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

Example:

```python
x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.less_equal(x, y) ==> [True, True, False]

x = tf.constant([5, 4, 6])
y = tf.constant([5, 6, 6])
tf.math.less_equal(x, y) ==> [True, True, True]
```


	参数

	
	x – A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.linspace(start, stop, num, name=None)

	Generates values in an interval.

A sequence of num evenly-spaced values are generated beginning at start.
If num > 1, the values in the sequence increase by stop - start / num - 1,
so that the last one is exactly stop.

For example:

`
tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0  11.0  12.0]
`


	参数

	
	start – A Tensor. Must be one of the following types: bfloat16, half, float32, float64.
0-D tensor. First entry in the range.


	stop – A Tensor. Must have the same type as start.
0-D tensor. Last entry in the range.


	num – A Tensor. Must be one of the following types: int32, int64.
0-D tensor. Number of values to generate.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as start.










	
tensorflow.load_library(library_location)

	Loads a TensorFlow plugin.

“library_location” can be a path to a specific shared object, or a folder.
If it is a folder, all shared objects that are named “libtfkernel*” will be
loaded. When the library is loaded, kernels registered in the library via the
REGISTER_* macros are made available in the TensorFlow process.


	参数

	library_location – Path to the plugin or the folder of plugins.
Relative or absolute filesystem path to a dynamic library file or folder.



	返回

	None



	Raises

	
	OSError – When the file to be loaded is not found.


	RuntimeError – when unable to load the library.













	
tensorflow.load_op_library(library_filename)

	Loads a TensorFlow plugin, containing custom ops and kernels.

Pass “library_filename” to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here. When the
library is loaded, ops and kernels registered in the library via the
REGISTER_* macros are made available in the TensorFlow process. Note
that ops with the same name as an existing op are rejected and not
registered with the process.


	参数

	library_filename – Path to the plugin.
Relative or absolute filesystem path to a dynamic library file.



	返回

	A python module containing the Python wrappers for Ops defined in
the plugin.



	Raises

	RuntimeError – when unable to load the library or get the python wrappers.










	
tensorflow.logical_and(x, y, name=None)

	Logical AND function.

The operation works for the following input types:


	Two single elements of type bool


	One tf.Tensor of type bool and one single bool, where the result will
be calculated by applying logical AND with the single element to each
element in the larger Tensor.


	Two tf.Tensor objects of type bool of the same shape. In this case,
the result will be the element-wise logical AND of the two input tensors.




Usage:

>>> a = tf.constant([True])
>>> b = tf.constant([False])
>>> tf.math.logical_and(a, b)
<tf.Tensor: shape=(1,), dtype=bool, numpy=array([False])>





>>> c = tf.constant([True])
>>> x = tf.constant([False, True, True, False])
>>> tf.math.logical_and(c, x)
<tf.Tensor: shape=(4,), dtype=bool, numpy=array([False,  True,  True, False])>





>>> y = tf.constant([False, False, True, True])
>>> z = tf.constant([False, True, False, True])
>>> tf.math.logical_and(y, z)
<tf.Tensor: shape=(4,), dtype=bool, numpy=array([False, False, False,  True])>






	参数

	
	x – A tf.Tensor type bool.


	y – A tf.Tensor of type bool.


	name – A name for the operation (optional).






	返回

	A tf.Tensor of type bool with the same size as that of x or y.










	
tensorflow.logical_not(x, name=None)

	Returns the truth value of NOT x element-wise.

Example:

>>> tf.math.logical_not(tf.constant([True, False]))
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([False,  True])>






	参数

	
	x – A Tensor of type bool. A Tensor of type bool.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.logical_or(x, y, name=None)

	Returns the truth value of x OR y element-wise.

NOTE: math.logical_or supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor of type bool.


	y – A Tensor of type bool.


	name – A name for the operation (optional).






	返回

	A Tensor of type bool.










	
tensorflow.make_ndarray(tensor)

	Create a numpy ndarray from a tensor.

Create a numpy ndarray with the same shape and data as the tensor.

For example:

`python
# Tensor a has shape (2,3)
a = tf.constant([[1,2,3],[4,5,6]])
proto_tensor = tf.make_tensor_proto(a)  # convert `tensor a` to a proto tensor
tf.make_ndarray(proto_tensor) # output: array([[1, 2, 3],
#                                              [4, 5, 6]], dtype=int32)
# output has shape (2,3)
`


	参数

	tensor – A TensorProto.



	返回

	A numpy array with the tensor contents.



	Raises

	TypeError – if tensor has unsupported type.










	
tensorflow.make_tensor_proto(values, dtype=None, shape=None, verify_shape=False, allow_broadcast=False)

	Create a TensorProto.

In TensorFlow 2.0, representing tensors as protos should no longer be a
common workflow. That said, this utility function is still useful for
generating TF Serving request protos:


	```python

	request = tensorflow_serving.apis.predict_pb2.PredictRequest()
request.model_spec.name = “my_model”
request.model_spec.signature_name = “serving_default”
request.inputs[“images”].CopyFrom(tf.make_tensor_proto(X_new))





```

make_tensor_proto accepts “values” of a python scalar, a python list, a
numpy ndarray, or a numpy scalar.

If “values” is a python scalar or a python list, make_tensor_proto
first convert it to numpy ndarray. If dtype is None, the
conversion tries its best to infer the right numpy data
type. Otherwise, the resulting numpy array has a compatible data
type with the given dtype.

In either case above, the numpy ndarray (either the caller provided
or the auto-converted) must have the compatible type with dtype.

make_tensor_proto then converts the numpy array to a tensor proto.

If “shape” is None, the resulting tensor proto represents the numpy
array precisely.

Otherwise, “shape” specifies the tensor’s shape and the numpy array
can not have more elements than what “shape” specifies.


	参数

	
	values – Values to put in the TensorProto.


	dtype – Optional tensor_pb2 DataType value.


	shape – List of integers representing the dimensions of tensor.


	verify_shape – Boolean that enables verification of a shape of values.


	allow_broadcast – Boolean that enables allowing scalars and 1 length vector
broadcasting. Cannot be true when verify_shape is true.






	返回

	A TensorProto. Depending on the type, it may contain data in the
“tensor_content” attribute, which is not directly useful to Python programs.
To access the values you should convert the proto back to a numpy ndarray
with tf.make_ndarray(proto).

If values is a TensorProto, it is immediately returned; dtype and
shape are ignored.





	Raises

	
	TypeError – if unsupported types are provided.


	ValueError – if arguments have inappropriate values or if verify_shape is
True and shape of values is not equals to a shape from the argument.













	
tensorflow.map_fn(fn, elems, dtype=None, parallel_iterations=None, back_prop=True, swap_memory=False, infer_shape=True, name=None)

	map on the list of tensors unpacked from elems on dimension 0. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.map_fn(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.map_fn(fn, elems))

The simplest version of map_fn repeatedly applies the callable fn to a
sequence of elements from first to last. The elements are made of the
tensors unpacked from elems. dtype is the data type of the return
value of fn. Users must provide dtype if it is different from
the data type of elems.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is [values.shape[0]] + fn(values[0]).shape.

This method also allows multi-arity elems and output of fn.  If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension.  The signature of fn may
match the structure of elems.  That is, if elems is
(t1, [t2, t3, [t4, t5]]), then an appropriate signature for fn is:
fn = lambda (t1, [t2, t3, [t4, t5]]):.

Furthermore, fn may emit a different structure than its input.  For example,
fn may look like: fn = lambda t1: return (t1 + 1, t1 - 1).  In this case,
the dtype parameter is not optional: dtype must be a type or (possibly
nested) tuple of types matching the output of fn.

To apply a functional operation to the nonzero elements of a SparseTensor
one of the following methods is recommended. First, if the function is
expressible as TensorFlow ops, use


	```python

	result = SparseTensor(input.indices, fn(input.values), input.dense_shape)





```

If, however, the function is not expressible as a TensorFlow op, then use

```python
result = SparseTensor(


input.indices, map_fn(fn, input.values), input.dense_shape)




```

instead.

When executing eagerly, map_fn does not execute in parallel even if
parallel_iterations is set to a value > 1. You can still get the
performance benefits of running a function in parallel by using the
tf.function decorator,

```python
# Assume the function being used in map_fn is fn.
# To ensure map_fn calls fn in parallel, use the tf.function decorator.
@tf.function
def func(tensor):


return tf.map_fn(fn, tensor)




```

Note that if you use the tf.function decorator, any non-TensorFlow Python
code that you may have written in your function won’t get executed. See
[tf.function](https://www.tensorflow.org/api_docs/python/tf/function) for
more  details. The recommendation would be to debug without tf.function but
switch to it to get performance benefits of running map_fn in parallel.


	参数

	
	fn – The callable to be performed.  It accepts one argument, which will have
the same (possibly nested) structure as elems.  Its output must have the
same structure as dtype if one is provided, otherwise it must have the
same structure as elems.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension.  The nested sequence of the
resulting slices will be applied to fn.


	dtype – (optional) The output type(s) of fn.  If fn returns a structure
of Tensors differing from the structure of elems, then dtype is not
optional and must have the same structure as the output of fn.


	parallel_iterations – (optional) The number of iterations allowed to run in
parallel. When graph building, the default value is 10. While executing
eagerly, the default value is set to 1.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – (optional) True enables GPU-CPU memory swapping.


	infer_shape – (optional) False disables tests for consistent output shapes.


	name – (optional) Name prefix for the returned tensors.






	返回

	A tensor or (possibly nested) sequence of tensors.  Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, from first to last.



	Raises

	
	TypeError – if fn is not callable or the structure of the output of
fn and dtype do not match, or if elems is a SparseTensor.


	ValueError – if the lengths of the output of fn and dtype do not match.








实际案例

`python
elems = np.array([1, 2, 3, 4, 5, 6])
squares = map_fn(lambda x: x * x, elems)
# squares == [1, 4, 9, 16, 25, 36]
`

`python
elems = (np.array([1, 2, 3]), np.array([-1, 1, -1]))
alternate = map_fn(lambda x: x[0] * x[1], elems, dtype=tf.int64)
# alternate == [-1, 2, -3]
`

`python
elems = np.array([1, 2, 3])
alternates = map_fn(lambda x: (x, -x), elems, dtype=(tf.int64, tf.int64))
# alternates[0] == [1, 2, 3]
# alternates[1] == [-1, -2, -3]
`






	
tensorflow.matmul(a, b, transpose_a=False, transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=False, b_is_sparse=False, name=None)

	Multiplies matrix a by matrix b, producing a * b.

The inputs must, following any transpositions, be tensors of rank >= 2
where the inner 2 dimensions specify valid matrix multiplication dimensions,
and any further outer dimensions specify matching batch size.

Both matrices must be of the same type. The supported types are:
float16, float32, float64, int32, complex64, complex128.

Either matrix can be transposed or adjointed (conjugated and transposed) on
the fly by setting one of the corresponding flag to True. These are False
by default.

If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse or b_is_sparse flag to True. These are False by default.
This optimization is only available for plain matrices (rank-2 tensors) with
datatypes bfloat16 or float32.

A simple 2-D tensor matrix multiplication:

>>> a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
>>> a  # 2-D tensor
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)>
>>> b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
>>> b  # 2-D tensor
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[ 7,  8],
       [ 9, 10],
       [11, 12]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c  # `a` * `b`
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 58,  64],
       [139, 154]], dtype=int32)>





A batch matrix multiplication with batch shape [2]:

>>> a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
>>> a  # 3-D tensor
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]], dtype=int32)>
>>> b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
>>> b  # 3-D tensor
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[13, 14],
        [15, 16],
        [17, 18]],
       [[19, 20],
        [21, 22],
        [23, 24]]], dtype=int32)>
>>> c = tf.matmul(a, b)
>>> c  # `a` * `b`
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
        [229, 244]],
       [[508, 532],
        [697, 730]]], dtype=int32)>





Since python >= 3.5 the @ operator is supported
(see [PEP 465](https://www.python.org/dev/peps/pep-0465/)). In TensorFlow,
it simply calls the tf.matmul() function, so the following lines are
equivalent:

>>> d = a @ b @ [[10], [11]]
>>> d = tf.matmul(tf.matmul(a, b), [[10], [11]])






	参数

	
	a – tf.Tensor of type float16, float32, float64, int32,
complex64, complex128 and rank > 1.


	b – tf.Tensor with same type and rank as a.


	transpose_a – If True, a is transposed before multiplication.


	transpose_b – If True, b is transposed before multiplication.


	adjoint_a – If True, a is conjugated and transposed before
multiplication.


	adjoint_b – If True, b is conjugated and transposed before
multiplication.


	a_is_sparse – If True, a is treated as a sparse matrix. Notice, this
does not support `tf.sparse.SparseTensor`, it just makes optimizations
that assume most values in a are zero.
See tf.sparse.sparse_dense_matmul
for some support for tf.SparseTensor multiplication.


	b_is_sparse – If True, b is treated as a sparse matrix. Notice, this
does not support `tf.sparse.SparseTensor`, it just makes optimizations
that assume most values in a are zero.
See tf.sparse.sparse_dense_matmul
for some support for tf.SparseTensor multiplication.


	name – Name for the operation (optional).






	返回

	A tf.Tensor of the same type as a and b where each inner-most matrix
is the product of the corresponding matrices in a and b, e.g. if all
transpose or adjoint attributes are False:

output[…, i, j] = sum_k (a[…, i, k] * b[…, k, j]),
for all indices i, j.

Note: This is matrix product, not element-wise product.





	Raises

	ValueError – If transpose_a and adjoint_a, or transpose_b and
adjoint_b are both set to True.










	
tensorflow.matrix_square_root(input, name=None)

	Computes the matrix square root of one or more square matrices:

matmul(sqrtm(A), sqrtm(A)) = A

The input matrix should be invertible. If the input matrix is real, it should
have no eigenvalues which are real and negative (pairs of complex conjugate
eigenvalues are allowed).

The matrix square root is computed by first reducing the matrix to
quasi-triangular form with the real Schur decomposition. The square root
of the quasi-triangular matrix is then computed directly. Details of
the algorithm can be found in: Nicholas J. Higham, “Computing real
square roots of a real matrix”, Linear Algebra Appl., 1987.

The input is a tensor of shape […, M, M] whose inner-most 2 dimensions
form square matrices. The output is a tensor of the same shape as the input
containing the matrix square root for all input submatrices […, :, :].


	参数

	
	input – A Tensor. Must be one of the following types: float64, float32, half, complex64, complex128.
Shape is […, M, M].


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.maximum(x, y, name=None)

	Returns the max of x and y (i.e. x > y ? x : y) element-wise.

Example:
>>> x = tf.constant([0., 0., 0., 0.])
>>> y = tf.constant([-2., 0., 2., 5.])
>>> tf.math.maximum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([0., 0., 2., 5.], dtype=float32)>


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.meshgrid(*args, **kwargs)

	Broadcasts parameters for evaluation on an N-D grid.

Given N one-dimensional coordinate arrays *args, returns a list outputs
of N-D coordinate arrays for evaluating expressions on an N-D grid.

Notes:

meshgrid supports cartesian (‘xy’) and matrix (‘ij’) indexing conventions.
When the indexing argument is set to ‘xy’ (the default), the broadcasting
instructions for the first two dimensions are swapped.

Examples:

Calling X, Y = meshgrid(x, y) with the tensors

`python
x = [1, 2, 3]
y = [4, 5, 6]
X, Y = tf.meshgrid(x, y)
# X = [[1, 2, 3],
#      [1, 2, 3],
#      [1, 2, 3]]
# Y = [[4, 4, 4],
#      [5, 5, 5],
#      [6, 6, 6]]
`


	参数

	
	*args – `Tensor`s with rank 1.


	**kwargs – 
	indexing: Either ‘xy’ or ‘ij’ (optional, default: ‘xy’).


	name: A name for the operation (optional).











	返回

	A list of N `Tensor`s with rank N.



	返回类型

	outputs



	Raises

	
	TypeError – When no keyword arguments (kwargs) are passed.


	ValueError – When indexing keyword argument is not one of xy or ij.













	
tensorflow.minimum(x, y, name=None)

	Returns the min of x and y (i.e. x < y ? x : y) element-wise.

Example:
>>> x = tf.constant([0., 0., 0., 0.])
>>> y = tf.constant([-5., -2., 0., 3.])
>>> tf.math.minimum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)>


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.multiply(x, y, name=None)

	Returns an element-wise x * y.

For example:

>>> x = tf.constant(([1, 2, 3, 4]))
>>> tf.math.multiply(x, x)
<tf.Tensor: shape=(4,), dtype=..., numpy=array([ 1,  4,  9, 16], dtype=int32)>





Since tf.math.multiply will convert its arguments to Tensor`s, you can also
pass in non-`Tensor arguments:

>>> tf.math.multiply(7,6)
<tf.Tensor: shape=(), dtype=int32, numpy=42>





If x.shape is not thes same as y.shape, they will be broadcast to a
compatible shape. (More about broadcasting
[here](https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html).)

For example:

>>> x = tf.ones([1, 2]);
>>> y = tf.ones([2, 1]);
>>> x * y  # Taking advantage of operator overriding
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 1.],
     [1., 1.]], dtype=float32)>






	参数

	
	x – A Tensor. Must be one of the following types: bfloat16,
half, float32, float64, uint8, int8, uint16,
int16, int32, int64, complex64, complex128.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).








Returns:

A Tensor.  Has the same type as x.


	Raises

	* InvalidArgumentError – When x and y have incomptatible shapes or types.










	
tensorflow.name_scope

	tensorflow.python.framework.ops.name_scope_v2 的别名






	
tensorflow.negative(x, name=None)

	Computes numerical negative value element-wise.

I.e., \(y = -x\).


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.negative(x.values, …), x.dense_shape)












	
tensorflow.no_gradient(op_type)

	Specifies that ops of type op_type is not differentiable.

This function should not be used for operations that have a
well-defined gradient that is not yet implemented.

This function is only used when defining a new op type. It may be
used for ops such as tf.size() that are not differentiable.  For
example:

`python
tf.no_gradient("Size")
`

The gradient computed for ‘op_type’ will then propagate zeros.

For ops that have a well-defined gradient but are not yet implemented,
no declaration should be made, and an error must be thrown if
an attempt to request its gradient is made.


	参数

	op_type – The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.



	Raises

	TypeError – If op_type is not a string.










	
tensorflow.no_op(name=None)

	Does nothing. Only useful as a placeholder for control edges.


	参数

	name – A name for the operation (optional).



	返回

	The created Operation.










	
tensorflow.nondifferentiable_batch_function(num_batch_threads, max_batch_size, batch_timeout_micros, allowed_batch_sizes=None, max_enqueued_batches=10, autograph=True)

	Batches the computation done by the decorated function.

So, for example, in the following code

```python
@batch_function(1, 2, 3)
def layer(a):


return tf.matmul(a, a)




b = layer(w)
```

if more than one session.run call is simultaneously trying to compute b
the values of w will be gathered, non-deterministically concatenated
along the first axis, and only one thread will run the computation. See the
documentation of the Batch op for more details.

Assumes that all arguments of the decorated function are Tensors which will
be batched along their first dimension.

SparseTensor is not supported. The return value of the decorated function
must be a Tensor or a list/tuple of Tensors.


	参数

	
	num_batch_threads – Number of scheduling threads for processing batches
of work. Determines the number of batches processed in parallel.


	max_batch_size – Batch sizes will never be bigger than this.


	batch_timeout_micros – Maximum number of microseconds to wait before
outputting an incomplete batch.


	allowed_batch_sizes – Optional list of allowed batch sizes. If left empty,
does nothing. Otherwise, supplies a list of batch sizes, causing the op
to pad batches up to one of those sizes. The entries must increase
monotonically, and the final entry must equal max_batch_size.


	max_enqueued_batches – The maximum depth of the batch queue. Defaults to 10.


	autograph – Whether to use autograph to compile python and eager style code
for efficient graph-mode execution.






	返回

	The decorated function will return the unbatched computation output Tensors.










	
tensorflow.norm(tensor, ord='euclidean', axis=None, keepdims=None, name=None)

	Computes the norm of vectors, matrices, and tensors.

This function can compute several different vector norms (the 1-norm, the
Euclidean or 2-norm, the inf-norm, and in general the p-norm for p > 0) and
matrix norms (Frobenius, 1-norm, 2-norm and inf-norm).


	参数

	
	tensor – Tensor of types float32, float64, complex64, complex128


	ord – Order of the norm. Supported values are ‘fro’, ‘euclidean’,
1, 2, np.inf and any positive real number yielding the corresponding
p-norm. Default is ‘euclidean’ which is equivalent to Frobenius norm if
tensor is a matrix and equivalent to 2-norm for vectors.
Some restrictions apply:



	The Frobenius norm ‘fro’ is not defined for vectors,


	If axis is a 2-tuple (matrix norm), only ‘euclidean’, ‘fro’, 1,
2, np.inf are supported.







See the description of axis on how to compute norms for a batch of
vectors or matrices stored in a tensor.




	axis – If axis is None (the default), the input is considered a vector
and a single vector norm is computed over the entire set of values in the
tensor, i.e. norm(tensor, ord=ord) is equivalent to
norm(reshape(tensor, [-1]), ord=ord).
If axis is a Python integer, the input is considered a batch of vectors,
and axis determines the axis in tensor over which to compute vector
norms.
If axis is a 2-tuple of Python integers it is considered a batch of
matrices and axis determines the axes in tensor over which to compute
a matrix norm.
Negative indices are supported. Example: If you are passing a tensor that
can be either a matrix or a batch of matrices at runtime, pass
axis=[-2,-1] instead of axis=None to make sure that matrix norms are
computed.


	keepdims – If True, the axis indicated in axis are kept with size 1.
Otherwise, the dimensions in axis are removed from the output shape.


	name – The name of the op.






	返回

	
	A Tensor of the same type as tensor, containing the vector or

	matrix norms. If keepdims is True then the rank of output is equal to
the rank of tensor. Otherwise, if axis is none the output is a scalar,
if axis is an integer, the rank of output is one less than the rank
of tensor, if axis is a 2-tuple the rank of output is two less
than the rank of tensor.









	返回类型

	output



	Raises

	ValueError – If ord or axis is invalid.





@compatibility(numpy)
Mostly equivalent to numpy.linalg.norm.
Not supported: ord <= 0, 2-norm for matrices, nuclear norm.
Other differences:



	If axis is None, treats the flattened tensor as a vector





regardless of rank.





	Explicitly supports ‘euclidean’ norm as the default, including for





higher order tensors.







@end_compatibility






	
tensorflow.not_equal(x, y, name=None)

	Returns the truth value of (x != y) element-wise.

Performs a [broadcast](
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) with the
arguments and then an element-wise inequality comparison, returning a Tensor
of boolean values.

For example:

>>> x = tf.constant([2, 4])
>>> y = tf.constant(2)
>>> tf.math.not_equal(x, y)
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([False,  True])>





>>> x = tf.constant([2, 4])
>>> y = tf.constant([2, 4])
>>> tf.math.not_equal(x, y)
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([False,  False])>






	参数

	
	x – A tf.Tensor or tf.SparseTensor or tf.IndexedSlices.


	y – A tf.Tensor or tf.SparseTensor or tf.IndexedSlices.


	name – A name for the operation (optional).






	返回

	A tf.Tensor of type bool with the same size as that of x or y.



	Raises

	tf.errors.InvalidArgumentError – If shapes of arguments are incompatible










	
tensorflow.numpy_function(func, inp, Tout, name=None)

	Wraps a python function and uses it as a TensorFlow op.

Given a python function func wrap this function as an operation in a
TensorFlow function. func must take numpy arrays as its arguments and
return numpy arrays as its outputs.

The following example creates a TensorFlow graph with np.sinh() as an
operation in the graph:

>>> def my_numpy_func(x):
...   # x will be a numpy array with the contents of the input to the
...   # tf.function
...   return np.sinh(x)
>>> @tf.function(input_signature=[tf.TensorSpec(None, tf.float32)])
... def tf_function(input):
...   y = tf.numpy_function(my_numpy_func, [input], tf.float32)
...   return y * y
>>> tf_function(tf.constant(1.))
<tf.Tensor: shape=(), dtype=float32, numpy=1.3810978>





Comparison to tf.py_function:
tf.py_function and tf.numpy_function are very similar, except that
tf.numpy_function takes numpy arrays, and not tf.Tensor`s. If you want the
function to contain `tf.Tensors, and have any TensorFlow operations executed
in the function be differentiable, please use tf.py_function.

Note: The tf.numpy_function operation has the following known
limitations:


	The body of the function (i.e. func) will not be serialized in a
tf.SavedModel. Therefore, you should not use this function if you need to
serialize your model and restore it in a different environment.


	The operation must run in the same address space as the Python program
that calls tf.numpy_function(). If you are using distributed
TensorFlow, you must run a tf.distribute.Server in the same process as the
program that calls tf.numpy_function  you must pin the created
operation to a device in that server (e.g. using with tf.device():).


	Since the function takes numpy arrays, you cannot take gradients
through a numpy_function. If you require something that is differentiable,
please consider using tf.py_function.


	The resulting function is assumed stateful and will never be optimized.





	参数

	
	func – A Python function, which accepts numpy.ndarray objects as arguments
and returns a list of numpy.ndarray objects (or a single
numpy.ndarray). This function must accept as many arguments as there are
tensors in inp, and these argument types will match the corresponding
tf.Tensor objects in inp. The returns numpy.ndarray`s must match the
number and types defined `Tout.
Important Note: Input and output numpy.ndarray`s of `func are not


guaranteed to be copies. In some cases their underlying memory will be
shared with the corresponding TensorFlow tensors. In-place modification
or storing func input or return values in python datastructures
without explicit (np.)copy can have non-deterministic consequences.







	inp – A list of tf.Tensor objects.


	Tout – A list or tuple of tensorflow data types or a single tensorflow data
type if there is only one, indicating what func returns.


	name – (Optional) A name for the operation.






	返回

	Single or list of tf.Tensor which func computes.










	
tensorflow.one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None)

	Returns a one-hot tensor.

The locations represented by indices in indices take value on_value,
while all other locations take value off_value.

on_value and off_value must have matching data types. If dtype is also
provided, they must be the same data type as specified by dtype.

If on_value is not provided, it will default to the value 1 with type
dtype

If off_value is not provided, it will default to the value 0 with type
dtype

If the input indices is rank N, the output will have rank N+1. The
new axis is created at dimension axis (default: the new axis is appended
at the end).

If indices is a scalar the output shape will be a vector of length depth

If indices is a vector of length features, the output shape will be:


	```

	features x depth if axis == -1
depth x features if axis == 0





```

If indices is a matrix (batch) with shape [batch, features], the output
shape will be:


	```

	batch x features x depth if axis == -1
batch x depth x features if axis == 1
depth x batch x features if axis == 0





```

If indices is a RaggedTensor, the ‘axis’ argument must be positive and refer
to a non-ragged axis. The output will be equivalent to applying ‘one_hot’ on
the values of the RaggedTensor, and creating a new RaggedTensor from the
result.

If dtype is not provided, it will attempt to assume the data type of
on_value or off_value, if one or both are passed in. If none of
on_value, off_value, or dtype are provided, dtype will default to the
value tf.float32.

Note: If a non-numeric data type output is desired (tf.string, tf.bool,
etc.), both on_value and off_value _must_ be provided to one_hot.

For example:

```python
indices = [0, 1, 2]
depth = 3
tf.one_hot(indices, depth)  # output: [3 x 3]
# [[1., 0., 0.],
#  [0., 1., 0.],
#  [0., 0., 1.]]

indices = [0, 2, -1, 1]
depth = 3
tf.one_hot(indices, depth,


on_value=5.0, off_value=0.0,
axis=-1)  # output: [4 x 3]




# [[5.0, 0.0, 0.0],  # one_hot(0)
#  [0.0, 0.0, 5.0],  # one_hot(2)
#  [0.0, 0.0, 0.0],  # one_hot(-1)
#  [0.0, 5.0, 0.0]]  # one_hot(1)

indices = [[0, 2], [1, -1]]
depth = 3
tf.one_hot(indices, depth,


on_value=1.0, off_value=0.0,
axis=-1)  # output: [2 x 2 x 3]




# [[[1.0, 0.0, 0.0],   # one_hot(0)
#   [0.0, 0.0, 1.0]],  # one_hot(2)
#  [[0.0, 1.0, 0.0],   # one_hot(1)
#   [0.0, 0.0, 0.0]]]  # one_hot(-1)

indices = tf.ragged.constant([[0, 1], [2]])
depth = 3
tf.one_hot(indices, depth)  # output: [2 x None x 3]
# [[[1., 0., 0.],
#   [0., 1., 0.]],
#  [[0., 0., 1.]]]
```


	参数

	
	indices – A Tensor of indices.


	depth – A scalar defining the depth of the one hot dimension.


	on_value – A scalar defining the value to fill in output when indices[j]
= i. (default: 1)


	off_value – A scalar defining the value to fill in output when indices[j]
!= i. (default: 0)


	axis – The axis to fill (default: -1, a new inner-most axis).


	dtype – The data type of the output tensor.


	name – A name for the operation (optional).






	返回

	The one-hot tensor.



	返回类型

	output



	Raises

	
	TypeError – If dtype of either on_value or off_value don’t match dtype


	TypeError – If dtype of on_value and off_value don’t match one another













	
tensorflow.ones(shape, dtype=tf.float32, name=None)

	Creates a tensor with all elements set to one (1).

See also tf.ones_like.

This operation returns a tensor of type dtype with shape shape and
all elements set to one.

>>> tf.ones([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]], dtype=int32)>






	参数

	
	shape – A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.


	dtype – Optional DType of an element in the resulting Tensor. Default is
tf.float32.


	name – Optional string. A name for the operation.






	返回

	A Tensor with all elements set to one (1).










	
tensorflow.ones_initializer

	tensorflow.python.ops.init_ops_v2.Ones 的别名






	
tensorflow.ones_like(input, dtype=None, name=None)

	Creates a tensor of all ones that has the same shape as the input.

See also tf.ones.

Given a single tensor (tensor), this operation returns a tensor of the
same type and shape as tensor with all elements set to 1. Optionally,
you can use dtype to specify a new type for the returned tensor.

For example:

>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.ones_like(tensor)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[1, 1, 1],
         [1, 1, 1]], dtype=int32)>






	参数

	
	input – A Tensor.


	dtype – A type for the returned Tensor. Must be float16, float32,
float64, int8, uint8, int16, uint16, int32, int64,
complex64, complex128, bool or string.


	name – A name for the operation (optional).






	返回

	A Tensor with all elements set to one.










	
tensorflow.pad(tensor, paddings, mode='CONSTANT', constant_values=0, name=None)

	Pads a tensor.

This operation pads a tensor according to the paddings you specify.
paddings is an integer tensor with shape [n, 2], where n is the rank of
tensor. For each dimension D of input, paddings[D, 0] indicates how
many values to add before the contents of tensor in that dimension, and
paddings[D, 1] indicates how many values to add after the contents of
tensor in that dimension. If mode is “REFLECT” then both paddings[D, 0]
and paddings[D, 1] must be no greater than tensor.dim_size(D) - 1. If
mode is “SYMMETRIC” then both paddings[D, 0] and paddings[D, 1] must be
no greater than tensor.dim_size(D).

The padded size of each dimension D of the output is:

paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]

For example:

```python
t = tf.constant([[1, 2, 3], [4, 5, 6]])
paddings = tf.constant([[1, 1,], [2, 2]])
# ‘constant_values’ is 0.
# rank of ‘t’ is 2.
tf.pad(t, paddings, “CONSTANT”)  # [[0, 0, 0, 0, 0, 0, 0],


#  [0, 0, 1, 2, 3, 0, 0],
#  [0, 0, 4, 5, 6, 0, 0],
#  [0, 0, 0, 0, 0, 0, 0]]





	tf.pad(t, paddings, “REFLECT”)  # [[6, 5, 4, 5, 6, 5, 4],

	#  [3, 2, 1, 2, 3, 2, 1],
#  [6, 5, 4, 5, 6, 5, 4],
#  [3, 2, 1, 2, 3, 2, 1]]



	tf.pad(t, paddings, “SYMMETRIC”)  # [[2, 1, 1, 2, 3, 3, 2],

	#  [2, 1, 1, 2, 3, 3, 2],
#  [5, 4, 4, 5, 6, 6, 5],
#  [5, 4, 4, 5, 6, 6, 5]]





```


	参数

	
	tensor – A Tensor.


	paddings – A Tensor of type int32.


	mode – One of “CONSTANT”, “REFLECT”, or “SYMMETRIC” (case-insensitive)


	constant_values – In “CONSTANT” mode, the scalar pad value to use. Must be
same type as tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.



	Raises

	ValueError – When mode is not one of “CONSTANT”, “REFLECT”, or “SYMMETRIC”.










	
tensorflow.parallel_stack(values, name='parallel_stack')

	Stacks a list of rank-R tensors into one rank-(R+1) tensor in parallel.

Requires that the shape of inputs be known at graph construction time.

Packs the list of tensors in values into a tensor with rank one higher than
each tensor in values, by packing them along the first dimension.
Given a list of length N of tensors of shape (A, B, C); the output
tensor will have the shape (N, A, B, C).

For example:

`python
x = tf.constant([1, 4])
y = tf.constant([2, 5])
z = tf.constant([3, 6])
tf.parallel_stack([x, y, z])  # [[1, 4], [2, 5], [3, 6]]
`

The difference between stack and parallel_stack is that stack requires
all the inputs be computed before the operation will begin but doesn’t require
that the input shapes be known during graph construction.

parallel_stack will copy pieces of the input into the output as they become
available, in some situations this can provide a performance benefit.

Unlike stack, parallel_stack does NOT support backpropagation.

This is the opposite of unstack.  The numpy equivalent is


tf.parallel_stack([x, y, z]) = np.asarray([x, y, z])





	参数

	
	values – A list of Tensor objects with the same shape and type.


	name – A name for this operation (optional).






	返回

	A stacked Tensor with the same type as values.



	返回类型

	output










	
tensorflow.pow(x, y, name=None)

	Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

`python
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y)  # [[256, 65536], [9, 27]]
`


	参数

	
	x – A Tensor of type float16, float32, float64, int32, int64,
complex64, or complex128.


	y – A Tensor of type float16, float32, float64, int32, int64,
complex64, or complex128.


	name – A name for the operation (optional).






	返回

	A Tensor.










	
tensorflow.print(*inputs, **kwargs)

	Print the specified inputs.

A TensorFlow operator that prints the specified inputs to a desired
output stream or logging level. The inputs may be dense or sparse Tensors,
primitive python objects, data structures that contain tensors, and printable
Python objects. Printed tensors will recursively show the first and last
elements of each dimension to summarize.

@compatibility(python2)
In python 2.7, make sure to import the following:
from __future__ import print_function
@end_compatibility

Example

Single-input usage:

`python
tensor = tf.range(10)
tf.print(tensor, output_stream=sys.stderr)
`

(This prints “[0 1 2 … 7 8 9]” to sys.stderr)

Multi-input usage:

`python
tensor = tf.range(10)
tf.print("tensors:", tensor, {2: tensor * 2}, output_stream=sys.stdout)
`

(This prints “tensors: [0 1 2 … 7 8 9] {2: [0 2 4 … 14 16 18]}” to
sys.stdout)

Changing the input separator:
`python
tensor_a = tf.range(2)
tensor_b = tensor_a * 2
tf.print(tensor_a, tensor_b, output_stream=sys.stderr, sep=',')
`

(This prints “[0 1],[0 2]” to sys.stderr)

Usage in a tf.function:

```python
@tf.function
def f():


tensor = tf.range(10)
tf.print(tensor, output_stream=sys.stderr)
return tensor




range_tensor = f()
```

(This prints “[0 1 2 … 7 8 9]” to sys.stderr)

@compatibility(TF 1.x Graphs and Sessions)
In graphs manually created outside of tf.function, this method returns
the created TF operator that prints the data. To make sure the
operator runs, users need to pass the produced op to
tf.compat.v1.Session’s run method, or to use the op as a control
dependency for executed ops by specifying
with tf.compat.v1.control_dependencies([print_op]).
@end_compatibility


Compatibility usage in TF 1.x graphs:

```python
sess = tf.compat.v1.Session()
with sess.as_default():


tensor = tf.range(10)
print_op = tf.print(“tensors:”, tensor, {2: tensor * 2},


output_stream=sys.stdout)





	with tf.control_dependencies([print_op]):

	tripled_tensor = tensor * 3





sess.run(tripled_tensor)




```

(This prints “tensors: [0 1 2 … 7 8 9] {2: [0 2 4 … 14 16 18]}” to
sys.stdout)





	Note: In Jupyter notebooks and colabs, tf.print prints to the notebook

	cell outputs. It will not write to the notebook kernel’s console logs.






	参数

	
	*inputs – Positional arguments that are the inputs to print. Inputs in the
printed output will be separated by spaces. Inputs may be python
primitives, tensors, data structures such as dicts and lists that may
contain tensors (with the data structures possibly nested in arbitrary
ways), and printable python objects.


	output_stream – The output stream, logging level, or file to print to.
Defaults to sys.stderr, but sys.stdout, tf.compat.v1.logging.info,
tf.compat.v1.logging.warning, tf.compat.v1.logging.error,
absl.logging.info, absl.logging.warning and absl.logging.error are also
supported. To print to a file, pass a string started with “file://”
followed by the file path, e.g., “file:///tmp/foo.out”.


	summarize – The first and last summarize elements within each dimension are
recursively printed per Tensor. If None, then the first 3 and last 3
elements of each dimension are printed for each tensor. If set to -1, it
will print all elements of every tensor.


	sep – The string to use to separate the inputs. Defaults to ” “.


	end – End character that is appended at the end the printed string.
Defaults to the newline character.


	name – A name for the operation (optional).






	返回

	None when executing eagerly. During graph tracing this returns
a TF operator that prints the specified inputs in the specified output
stream or logging level. This operator will be automatically executed
except inside of tf.compat.v1 graphs and sessions.



	Raises

	ValueError – If an unsupported output stream is specified.










	
tensorflow.py_function(func, inp, Tout, name=None)

	Wraps a python function into a TensorFlow op that executes it eagerly.

This function allows expressing computations in a TensorFlow graph as
Python functions. In particular, it wraps a Python function func
in a once-differentiable TensorFlow operation that executes it with eager
execution enabled. As a consequence, tf.py_function makes it
possible to express control flow using Python constructs (if, while,
for, etc.), instead of TensorFlow control flow constructs (tf.cond,
tf.while_loop). For example, you might use tf.py_function to
implement the log huber function:

```python
def log_huber(x, m):



	if tf.abs(x) <= m:

	return x**2



	else:

	return m**2 * (1 - 2 * tf.math.log(m) + tf.math.log(x**2))








x = tf.compat.v1.placeholder(tf.float32)
m = tf.compat.v1.placeholder(tf.float32)

y = tf.py_function(func=log_huber, inp=[x, m], Tout=tf.float32)
dy_dx = tf.gradients(y, x)[0]


	with tf.compat.v1.Session() as sess:

	# The session executes log_huber eagerly. Given the feed values below,
# it will take the first branch, so y evaluates to 1.0 and
# dy_dx evaluates to 2.0.
y, dy_dx = sess.run([y, dy_dx], feed_dict={x: 1.0, m: 2.0})





```

You can also use tf.py_function to debug your models at runtime
using Python tools, i.e., you can isolate portions of your code that
you want to debug, wrap them in Python functions and insert pdb tracepoints
or print statements as desired, and wrap those functions in
tf.py_function.

For more information on eager execution, see the
[Eager guide](https://tensorflow.org/guide/eager).

tf.py_function is similar in spirit to tf.compat.v1.py_func, but unlike
the latter, the former lets you use TensorFlow operations in the wrapped
Python function. In particular, while tf.compat.v1.py_func only runs on CPUs
and
wraps functions that take NumPy arrays as inputs and return NumPy arrays as
outputs, tf.py_function can be placed on GPUs and wraps functions
that take Tensors as inputs, execute TensorFlow operations in their bodies,
and return Tensors as outputs.

Like tf.compat.v1.py_func, tf.py_function has the following limitations
with respect to serialization and distribution:


	The body of the function (i.e. func) will not be serialized in a
GraphDef. Therefore, you should not use this function if you need to
serialize your model and restore it in a different environment.


	The operation must run in the same address space as the Python program
that calls tf.py_function(). If you are using distributed
TensorFlow, you must run a tf.distribute.Server in the same process as the
program that calls tf.py_function() and you must pin the created
operation to a device in that server (e.g. using with tf.device():).





	参数

	
	func – A Python function which accepts a list of Tensor objects having
element types that match the corresponding tf.Tensor objects in inp
and returns a list of Tensor objects (or a single Tensor, or None)
having element types that match the corresponding values in Tout.


	inp – A list of Tensor objects.


	Tout – A list or tuple of tensorflow data types or a single tensorflow data
type if there is only one, indicating what func returns; an empty list
if no value is returned (i.e., if the return value is None).


	name – A name for the operation (optional).






	返回

	A list of Tensor or a single Tensor which func computes; an empty list
if func returns None.










	
tensorflow.random_normal_initializer

	tensorflow.python.ops.init_ops_v2.RandomNormal 的别名






	
tensorflow.random_uniform_initializer

	tensorflow.python.ops.init_ops_v2.RandomUniform 的别名






	
tensorflow.range(start, limit=None, delta=1, dtype=None, name='range')

	Creates a sequence of numbers.

Creates a sequence of numbers that begins at start and extends by
increments of delta up to but not including limit.

The dtype of the resulting tensor is inferred from the inputs unless
it is provided explicitly.

Like the Python builtin range, start defaults to 0, so that
range(n) = range(0, n).

For example:

>>> start = 3
>>> limit = 18
>>> delta = 3
>>> tf.range(start, limit, delta)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([ 3,  6,  9, 12, 15], dtype=int32)>





>>> start = 3
>>> limit = 1
>>> delta = -0.5
>>> tf.range(start, limit, delta)
<tf.Tensor: shape=(4,), dtype=float32,
numpy=array([3. , 2.5, 2. , 1.5], dtype=float32)>





>>> limit = 5
>>> tf.range(limit)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([0, 1, 2, 3, 4], dtype=int32)>






	参数

	
	start – A 0-D Tensor (scalar). Acts as first entry in the range if limit
is not None; otherwise, acts as range limit and first entry defaults to 0.


	limit – A 0-D Tensor (scalar). Upper limit of sequence, exclusive. If None,
defaults to the value of start while the first entry of the range
defaults to 0.


	delta – A 0-D Tensor (scalar). Number that increments start. Defaults to
1.


	dtype – The type of the elements of the resulting tensor.


	name – A name for the operation. Defaults to “range”.






	返回

	An 1-D Tensor of type dtype.





@compatibility(numpy)
Equivalent to np.arange
@end_compatibility






	
tensorflow.rank(input, name=None)

	Returns the rank of a tensor.

Returns a 0-D int32 Tensor representing the rank of input.

For example:

`python
# shape of tensor 't' is [2, 2, 3]
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
tf.rank(t)  # 3
`

Note: The rank of a tensor is not the same as the rank of a matrix. The
rank of a tensor is the number of indices required to uniquely select each
element of the tensor. Rank is also known as “order”, “degree”, or “ndims.”


	参数

	
	input – A Tensor or SparseTensor.


	name – A name for the operation (optional).






	返回

	A Tensor of type int32.





@compatibility(numpy)
Equivalent to np.ndim
@end_compatibility






	
tensorflow.realdiv(x, y, name=None)

	Returns x / y element-wise for real types.

If x and y are reals, this will return the floating-point division.

NOTE: Div supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.recompute_grad(f)

	An eager-compatible version of recompute_grad.

For f(*args, **kwargs), this supports gradients with respect to args or
kwargs, but kwargs are currently only supported in eager-mode.
Note that for keras layer and model objects, this is handled automatically.

Warning: If f was originally a tf.keras Model or Layer object, g will not
be able to access the member variables of that object, because g returns
through the wrapper function inner.  When recomputing gradients through
objects that inherit from keras, we suggest keeping a reference to the
underlying object around for the purpose of accessing these variables.


	参数

	f – function f(*x) that returns a Tensor or sequence of Tensor outputs.



	返回

	A function g that wraps f, but which recomputes f on the backwards
pass of a gradient call.










	
tensorflow.reduce_all(input_tensor, axis=None, keepdims=False, name=None)

	Computes the “logical and” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

`python
x = tf.constant([[True,  True], [False, False]])
tf.reduce_all(x)  # False
tf.reduce_all(x, 0)  # [False, False]
tf.reduce_all(x, 1)  # [True, False]
`


	参数

	
	input_tensor – The boolean tensor to reduce.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.





@compatibility(numpy)
Equivalent to np.all
@end_compatibility






	
tensorflow.reduce_any(input_tensor, axis=None, keepdims=False, name=None)

	Computes the “logical or” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

`python
x = tf.constant([[True,  True], [False, False]])
tf.reduce_any(x)  # True
tf.reduce_any(x, 0)  # [True, True]
tf.reduce_any(x, 1)  # [True, False]
`


	参数

	
	input_tensor – The boolean tensor to reduce.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.





@compatibility(numpy)
Equivalent to np.any
@end_compatibility






	
tensorflow.reduce_logsumexp(input_tensor, axis=None, keepdims=False, name=None)

	Computes log(sum(exp(elements across dimensions of a tensor))).

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

This function is more numerically stable than log(sum(exp(input))). It avoids
overflows caused by taking the exp of large inputs and underflows caused by
taking the log of small inputs.

For example:

`python
x = tf.constant([[0., 0., 0.], [0., 0., 0.]])
tf.reduce_logsumexp(x)  # log(6)
tf.reduce_logsumexp(x, 0)  # [log(2), log(2), log(2)]
tf.reduce_logsumexp(x, 1)  # [log(3), log(3)]
tf.reduce_logsumexp(x, 1, keepdims=True)  # [[log(3)], [log(3)]]
tf.reduce_logsumexp(x, [0, 1])  # log(6)
`


	参数

	
	input_tensor – The tensor to reduce. Should have numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.










	
tensorflow.reduce_max(input_tensor, axis=None, keepdims=False, name=None)

	Computes the maximum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.

Usage example:

>>> x = tf.constant([5, 1, 2, 4])
>>> print(tf.reduce_max(x))
tf.Tensor(5, shape=(), dtype=int32)
>>> x = tf.constant([-5, -1, -2, -4])
>>> print(tf.reduce_max(x))
tf.Tensor(-1, shape=(), dtype=int32)
>>> x = tf.constant([4, float('nan')])
>>> print(tf.reduce_max(x))
tf.Tensor(4.0, shape=(), dtype=float32)
>>> x = tf.constant([float('nan'), float('nan')])
>>> print(tf.reduce_max(x))
tf.Tensor(-inf, shape=(), dtype=float32)
>>> x = tf.constant([float('-inf'), float('inf')])
>>> print(tf.reduce_max(x))
tf.Tensor(inf, shape=(), dtype=float32)





See the numpy docs for np.amax and np.nanmax behavior.


	参数

	
	input_tensor – The tensor to reduce. Should have real numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.










	
tensorflow.reduce_mean(input_tensor, axis=None, keepdims=False, name=None)

	Computes the mean of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis by computing the
mean of elements across the dimensions in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions are retained
with length 1.

If axis is None, all dimensions are reduced, and a tensor with a single
element is returned.

For example:

>>> x = tf.constant([[1., 1.], [2., 2.]])
>>> tf.reduce_mean(x)
<tf.Tensor: shape=(), dtype=float32, numpy=1.5>
>>> tf.reduce_mean(x, 0)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([1.5, 1.5], dtype=float32)>
>>> tf.reduce_mean(x, 1)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([1., 2.], dtype=float32)>






	参数

	
	input_tensor – The tensor to reduce. Should have numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.





@compatibility(numpy)
Equivalent to np.mean

Please note that np.mean has a dtype parameter that could be used to
specify the output type. By default this is dtype=float64. On the other
hand, tf.reduce_mean has an aggressive type inference from input_tensor,
for example:

>>> x = tf.constant([1, 0, 1, 0])
>>> tf.reduce_mean(x)
<tf.Tensor: shape=(), dtype=int32, numpy=0>
>>> y = tf.constant([1., 0., 1., 0.])
>>> tf.reduce_mean(y)
<tf.Tensor: shape=(), dtype=float32, numpy=0.5>





@end_compatibility






	
tensorflow.reduce_min(input_tensor, axis=None, keepdims=False, name=None)

	Computes the minimum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.


	参数

	
	input_tensor – The tensor to reduce. Should have real numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.






	For example:

	>>> a = tf.constant([[1, 2], [3, 4]])
>>> tf.reduce_min(a)
<tf.Tensor: shape=(), dtype=int32, numpy=1>









@compatibility(numpy)
Equivalent to np.min
@end_compatibility






	
tensorflow.reduce_prod(input_tensor, axis=None, keepdims=False, name=None)

	Computes the product of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.


	参数

	
	input_tensor – The tensor to reduce. Should have numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor.





@compatibility(numpy)
Equivalent to np.prod
@end_compatibility






	
tensorflow.reduce_sum(input_tensor, axis=None, keepdims=False, name=None)

	Computes the sum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.

If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

`python
x = tf.constant([[1, 1, 1], [1, 1, 1]])
tf.reduce_sum(x)  # 6
tf.reduce_sum(x, 0)  # [2, 2, 2]
tf.reduce_sum(x, 1)  # [3, 3]
tf.reduce_sum(x, 1, keepdims=True)  # [[3], [3]]
tf.reduce_sum(x, [0, 1])  # 6
`


	参数

	
	input_tensor – The tensor to reduce. Should have numeric type.


	axis – The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).


	keepdims – If true, retains reduced dimensions with length 1.


	name – A name for the operation (optional).






	返回

	The reduced tensor, of the same dtype as the input_tensor.





@compatibility(numpy)
Equivalent to np.sum apart the fact that numpy upcast uint8 and int32 to
int64 while tensorflow returns the same dtype as the input.
@end_compatibility






	
tensorflow.register_tensor_conversion_function(base_type, conversion_func, priority=100)

	Registers a function for converting objects of base_type to Tensor.

The conversion function must have the following signature:


	```python

	
	def conversion_func(value, dtype=None, name=None, as_ref=False):

	# …









```

It must return a Tensor with the given dtype if specified. If the
conversion function creates a new Tensor, it should use the given
name if specified. All exceptions will be propagated to the caller.

The conversion function may return NotImplemented for some
inputs. In this case, the conversion process will continue to try
subsequent conversion functions.

If as_ref is true, the function must return a Tensor reference,
such as a Variable.

NOTE: The conversion functions will execute in order of priority,
followed by order of registration. To ensure that a conversion function
F runs before another conversion function G, ensure that F is
registered with a smaller priority than G.


	参数

	
	base_type – The base type or tuple of base types for all objects that
conversion_func accepts.


	conversion_func – A function that converts instances of base_type to
Tensor.


	priority – Optional integer that indicates the priority for applying this
conversion function. Conversion functions with smaller priority values run
earlier than conversion functions with larger priority values. Defaults to
100.






	Raises

	TypeError – If the arguments do not have the appropriate type.










	
tensorflow.repeat(input, repeats, axis=None, name=None)

	Repeat elements of input.

See also tf.concat, tf.stack, tf.tile.


	参数

	
	input – An N-dimensional Tensor.


	repeats – An 1-D int Tensor. The number of repetitions for each element.
repeats is broadcasted to fit the shape of the given axis. len(repeats)
must equal input.shape[axis] if axis is not None.


	axis – An int. The axis along which to repeat values. By default (axis=None),
use the flattened input array, and return a flat output array.


	name – A name for the operation.






	返回

	
	A Tensor which has the same shape as input, except along the given axis.

	If axis is None then the output array is flattened to match the flattened
input array.











Example usage:

>>> repeat(['a', 'b', 'c'], repeats=[3, 0, 2], axis=0)
<tf.Tensor: shape=(5,), dtype=string,
numpy=array([b'a', b'a', b'a', b'c', b'c'], dtype=object)>





>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=0)
<tf.Tensor: shape=(5, 2), dtype=int32, numpy=
array([[1, 2],
       [1, 2],
       [3, 4],
       [3, 4],
       [3, 4]], dtype=int32)>





>>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=1)
<tf.Tensor: shape=(2, 5), dtype=int32, numpy=
array([[1, 1, 2, 2, 2],
       [3, 3, 4, 4, 4]], dtype=int32)>





>>> repeat(3, repeats=4)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([3, 3, 3, 3], dtype=int32)>





>>> repeat([[1,2], [3,4]], repeats=2)
<tf.Tensor: shape=(8,), dtype=int32,
numpy=array([1, 1, 2, 2, 3, 3, 4, 4], dtype=int32)>










	
tensorflow.required_space_to_batch_paddings(input_shape, block_shape, base_paddings=None, name=None)

	Calculate padding required to make block_shape divide input_shape.

This function can be used to calculate a suitable paddings argument for use
with space_to_batch_nd and batch_to_space_nd.


	参数

	
	input_shape – int32 Tensor of shape [N].


	block_shape – int32 Tensor of shape [N].


	base_paddings – Optional int32 Tensor of shape [N, 2].  Specifies the minimum
amount of padding to use.  All elements must be >= 0.  If not specified,
defaults to 0.


	name – string.  Optional name prefix.






	返回

	paddings and crops are int32 Tensors of rank 2 and shape [N, 2]
satisfying:


paddings[i, 0] = base_paddings[i, 0].
0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i]
(input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0

crops[i, 0] = 0
crops[i, 1] = paddings[i, 1] - base_paddings[i, 1]








	返回类型

	(paddings, crops), where





Raises: ValueError if called with incompatible shapes.






	
tensorflow.reshape(tensor, shape, name=None)

	Reshapes a tensor.

Given tensor, this operation returns a new tf.Tensor that has the same
values as tensor in the same order, except with a new shape given by
shape.

>>> t1 = [[1, 2, 3],
...       [4, 5, 6]]
>>> print(tf.shape(t1).numpy())
[2 3]
>>> t2 = tf.reshape(t1, [6])
>>> t2
<tf.Tensor: shape=(6,), dtype=int32,
  numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
>>> tf.reshape(t2, [3, 2])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
  array([[1, 2],
         [3, 4],
         [5, 6]], dtype=int32)>





The tf.reshape does not change the order of or the total number of elements
in the tensor, and so it can reuse the underlying data buffer. This makes it
a fast operation independent of how big of a tensor it is operating on.

>>> tf.reshape([1, 2, 3], [2, 2])
Traceback (most recent call last):
...
InvalidArgumentError: Input to reshape is a tensor with 3 values, but the
requested shape has 4





To instead reorder the data to rearrange the dimensions of a tensor, see
tf.transpose.

>>> t = [[1, 2, 3],
...      [4, 5, 6]]
>>> tf.reshape(t, [3, 2]).numpy()
array([[1, 2],
       [3, 4],
       [5, 6]], dtype=int32)
>>> tf.transpose(t, perm=[1, 0]).numpy()
array([[1, 4],
       [2, 5],
       [3, 6]], dtype=int32)





If one component of shape is the special value -1, the size of that
dimension is computed so that the total size remains constant.  In particular,
a shape of [-1] flattens into 1-D.  At most one component of shape can
be -1.

>>> t = [[1, 2, 3],
...      [4, 5, 6]]
>>> tf.reshape(t, [-1])
<tf.Tensor: shape=(6,), dtype=int32,
  numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
>>> tf.reshape(t, [3, -1])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
  array([[1, 2],
         [3, 4],
         [5, 6]], dtype=int32)>
>>> tf.reshape(t, [-1, 2])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
  array([[1, 2],
         [3, 4],
         [5, 6]], dtype=int32)>





tf.reshape(t, []) reshapes a tensor t with one element to a scalar.

>>> tf.reshape([7], []).numpy()
7





More examples:

>>> t = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print(tf.shape(t).numpy())
[9]
>>> tf.reshape(t, [3, 3])
<tf.Tensor: shape=(3, 3), dtype=int32, numpy=
  array([[1, 2, 3],
         [4, 5, 6],
         [7, 8, 9]], dtype=int32)>





>>> t = [[[1, 1], [2, 2]],
...      [[3, 3], [4, 4]]]
>>> print(tf.shape(t).numpy())
[2 2 2]
>>> tf.reshape(t, [2, 4])
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
  array([[1, 1, 2, 2],
         [3, 3, 4, 4]], dtype=int32)>





>>> t = [[[1, 1, 1],
...       [2, 2, 2]],
...      [[3, 3, 3],
...       [4, 4, 4]],
...      [[5, 5, 5],
...       [6, 6, 6]]]
>>> print(tf.shape(t).numpy())
[3 2 3]
>>> # Pass '[-1]' to flatten 't'.
>>> tf.reshape(t, [-1])
<tf.Tensor: shape=(18,), dtype=int32,
  numpy=array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6],
  dtype=int32)>
>>> # -- Using -1 to infer the shape --
>>> # Here -1 is inferred to be 9:
>>> tf.reshape(t, [2, -1])
<tf.Tensor: shape=(2, 9), dtype=int32, numpy=
  array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
         [4, 4, 4, 5, 5, 5, 6, 6, 6]], dtype=int32)>
>>> # -1 is inferred to be 2:
>>> tf.reshape(t, [-1, 9])
<tf.Tensor: shape=(2, 9), dtype=int32, numpy=
  array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
         [4, 4, 4, 5, 5, 5, 6, 6, 6]], dtype=int32)>
>>> # -1 is inferred to be 3:
>>> tf.reshape(t, [ 2, -1, 3])
<tf.Tensor: shape=(2, 3, 3), dtype=int32, numpy=
  array([[[1, 1, 1],
          [2, 2, 2],
          [3, 3, 3]],
         [[4, 4, 4],
          [5, 5, 5],
          [6, 6, 6]]], dtype=int32)>






	参数

	
	tensor – A Tensor.


	shape – A Tensor. Must be one of the following types: int32, int64.
Defines the shape of the output tensor.


	name – Optional string. A name for the operation.






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.reverse(tensor, axis, name=None)

	Reverses specific dimensions of a tensor.

NOTE tf.reverse has now changed behavior in preparation for 1.0.
tf.reverse_v2 is currently an alias that will be deprecated before TF 1.0.

Given a tensor, and a int32 tensor axis representing the set of
dimensions of tensor to reverse. This operation reverses each dimension
i for which there exists j s.t. axis[j] == i.

tensor can have up to 8 dimensions. The number of dimensions specified
in axis may be 0 or more entries. If an index is specified more than
once, a InvalidArgument error is raised.

For example:

```
# tensor ‘t’ is [[[[ 0,  1,  2,  3],
#                  [ 4,  5,  6,  7],
#                  [ 8,  9, 10, 11]],
#                 [[12, 13, 14, 15],
#                  [16, 17, 18, 19],
#                  [20, 21, 22, 23]]]]
# tensor ‘t’ shape is [1, 2, 3, 4]

# ‘dims’ is [3] or ‘dims’ is [-1]
reverse(t, dims) ==> [[[[ 3,  2,  1,  0],



[ 7,  6,  5,  4],
[ 11, 10, 9, 8]],





	[[15, 14, 13, 12],

	[19, 18, 17, 16],
[23, 22, 21, 20]]]]








# ‘dims’ is ‘[1]’ (or ‘dims’ is ‘[-3]’)
reverse(t, dims) ==> [[[[12, 13, 14, 15],



[16, 17, 18, 19],
[20, 21, 22, 23]





	[[ 0,  1,  2,  3],

	[ 4,  5,  6,  7],
[ 8,  9, 10, 11]]]]








# ‘dims’ is ‘[2]’ (or ‘dims’ is ‘[-2]’)
reverse(t, dims) ==> [[[[8, 9, 10, 11],



[4, 5, 6, 7],
[0, 1, 2, 3]]





	[[20, 21, 22, 23],

	[16, 17, 18, 19],
[12, 13, 14, 15]]]]








```


	参数

	
	tensor – A Tensor. Must be one of the following types: uint8, int8, uint16, int16, int32, int64, bool, bfloat16, half, float32, float64, complex64, complex128, string.
Up to 8-D.


	axis – A Tensor. Must be one of the following types: int32, int64.
1-D. The indices of the dimensions to reverse. Must be in the range
[-rank(tensor), rank(tensor)).


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.reverse_sequence(input, seq_lengths, seq_axis=None, batch_axis=None, name=None)

	Reverses variable length slices. (deprecated arguments) (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (seq_dim). They will be removed in a future version.
Instructions for updating:
seq_dim is deprecated, use seq_axis instead

Warning: SOME ARGUMENTS ARE DEPRECATED: (batch_dim). They will be removed in a future version.
Instructions for updating:
batch_dim is deprecated, use batch_axis instead

This op first slices input along the dimension batch_axis, and for
each slice i, reverses the first seq_lengths[i] elements along the
dimension seq_axis.

The elements of seq_lengths must obey seq_lengths[i] <=
input.dims[seq_dim], and seq_lengths must be a vector of length
input.dims[batch_dim].

The output slice i along dimension batch_axis is then given by
input slice i, with the first seq_lengths[i] slices along
dimension seq_axis reversed.

Example usage:

>>> seq_lengths = [7, 2, 3, 5]
>>> input = [[1, 2, 3, 4, 5, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0],
...          [1, 2, 3, 4, 0, 0, 0, 0], [1, 2, 3, 4, 5, 6, 7, 8]]
>>> output = tf.reverse_sequence(input, seq_lengths, seq_axis=1, batch_axis=0)
>>> output
<tf.Tensor: shape=(4, 8), dtype=int32, numpy=
array([[0, 0, 5, 4, 3, 2, 1, 0],
       [2, 1, 0, 0, 0, 0, 0, 0],
       [3, 2, 1, 4, 0, 0, 0, 0],
       [5, 4, 3, 2, 1, 6, 7, 8]], dtype=int32)>






	参数

	
	input – A Tensor. The input to reverse.


	seq_lengths – A Tensor. Must be one of the following types: int32,
int64. 1-D with length input.dims(batch_dim) and max(seq_lengths) <=
input.dims(seq_dim)


	seq_axis – An int. The dimension which is partially reversed.


	batch_axis – An optional int. Defaults to 0. The dimension along which
reversal is performed.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.roll(input, shift, axis, name=None)

	Rolls the elements of a tensor along an axis.

The elements are shifted positively (towards larger indices) by the offset of
shift along the dimension of axis. Negative shift values will shift
elements in the opposite direction. Elements that roll passed the last position
will wrap around to the first and vice versa. Multiple shifts along multiple
axes may be specified.

For example:

```
# ‘t’ is [0, 1, 2, 3, 4]
roll(t, shift=2, axis=0) ==> [3, 4, 0, 1, 2]

# shifting along multiple dimensions
# ‘t’ is [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
roll(t, shift=[1, -2], axis=[0, 1]) ==> [[7, 8, 9, 5, 6], [2, 3, 4, 0, 1]]

# shifting along the same axis multiple times
# ‘t’ is [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
roll(t, shift=[2, -3], axis=[1, 1]) ==> [[1, 2, 3, 4, 0], [6, 7, 8, 9, 5]]
```


	参数

	
	input – A Tensor.


	shift – A Tensor. Must be one of the following types: int32, int64.
Dimension must be 0-D or 1-D. shift[i] specifies the number of places by which
elements are shifted positively (towards larger indices) along the dimension
specified by axis[i]. Negative shifts will roll the elements in the opposite
direction.


	axis – A Tensor. Must be one of the following types: int32, int64.
Dimension must be 0-D or 1-D. axis[i] specifies the dimension that the shift
shift[i] should occur. If the same axis is referenced more than once, the
total shift for that axis will be the sum of all the shifts that belong to that
axis.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.round(x, name=None)

	Rounds the values of a tensor to the nearest integer, element-wise.

Rounds half to even.  Also known as bankers rounding. If you want to round
according to the current system rounding mode use tf::cint.
For example:

`python
x = tf.constant([0.9, 2.5, 2.3, 1.5, -4.5])
tf.round(x)  # [ 1.0, 2.0, 2.0, 2.0, -4.0 ]
`


	参数

	
	x – A Tensor of type float16, float32, float64, int32, or int64.


	name – A name for the operation (optional).






	返回

	A Tensor of same shape and type as x.










	
tensorflow.saturate_cast(value, dtype, name=None)

	Performs a safe saturating cast of value to dtype.

This function casts the input to dtype without applying any scaling.  If
there is a danger that values would over or underflow in the cast, this op
applies the appropriate clamping before the cast.


	参数

	
	value – A Tensor.


	dtype – The desired output DType.


	name – A name for the operation (optional).






	返回

	value safely cast to dtype.










	
tensorflow.scalar_mul(scalar, x, name=None)

	Multiplies a scalar times a Tensor or IndexedSlices object.

Intended for use in gradient code which might deal with IndexedSlices
objects, which are easy to multiply by a scalar but more expensive to
multiply with arbitrary tensors.


	参数

	
	scalar – A 0-D scalar Tensor. Must have known shape.


	x – A Tensor or IndexedSlices to be scaled.


	name – A name for the operation (optional).






	返回

	scalar * x of the same type (Tensor or IndexedSlices) as x.



	Raises

	ValueError – if scalar is not a 0-D scalar.










	
tensorflow.scan(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, infer_shape=True, reverse=False, name=None)

	scan on the list of tensors unpacked from elems on dimension 0. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.scan(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.scan(fn, elems))

The simplest version of scan repeatedly applies the callable fn to a
sequence of elements from first to last. The elements are made of the tensors
unpacked from elems on dimension 0. The callable fn takes two tensors as
arguments. The first argument is the accumulated value computed from the
preceding invocation of fn, and the second is the value at the current
position of elems. If initializer is None, elems must contain at least
one element, and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is [len(values)] + fn(initializer, values[0]).shape.
If reverse=True, it’s fn(initializer, values[-1]).shape.

This method also allows multi-arity elems and accumulator.  If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension.  The second argument of
fn must match the structure of elems.

If no initializer is provided, the output structure and dtypes of fn
are assumed to be the same as its input; and in this case, the first
argument of fn must match the structure of elems.

If an initializer is provided, then the output of fn must have the same
structure as initializer; and the first argument of fn must match
this structure.

For example, if elems is (t1, [t2, t3]) and initializer is
[i1, i2] then an appropriate signature for fn in python2 is:
fn = lambda (acc_p1, acc_p2), (t1, [t2, t3]): and fn must return a list,
[acc_n1, acc_n2].  An alternative correct signature for fn, and the


one that works in python3, is:




fn = lambda a, t:, where a and t correspond to the input tuples.


	参数

	
	fn – The callable to be performed.  It accepts two arguments.  The first will
have the same structure as initializer if one is provided, otherwise it
will have the same structure as elems.  The second will have the same
(possibly nested) structure as elems.  Its output must have the same
structure as initializer if one is provided, otherwise it must have the
same structure as elems.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension.  The nested sequence of the
resulting slices will be the first argument to fn.


	initializer – (optional) A tensor or (possibly nested) sequence of tensors,
initial value for the accumulator, and the expected output type of fn.


	parallel_iterations – (optional) The number of iterations allowed to run in
parallel.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – (optional) True enables GPU-CPU memory swapping.


	infer_shape – (optional) False disables tests for consistent output shapes.


	reverse – (optional) True scans the tensor last to first (instead of first to
last).


	name – (optional) Name prefix for the returned tensors.






	返回

	A tensor or (possibly nested) sequence of tensors.  Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, and the previous accumulator value(s), from first to last (or
last to first, if reverse=True).



	Raises

	
	TypeError – if fn is not callable or the structure of the output of
fn and initializer do not match.


	ValueError – if the lengths of the output of fn and initializer
do not match.








实际案例

`python
elems = np.array([1, 2, 3, 4, 5, 6])
sum = scan(lambda a, x: a + x, elems)
# sum == [1, 3, 6, 10, 15, 21]
sum = scan(lambda a, x: a + x, elems, reverse=True)
# sum == [21, 20, 18, 15, 11, 6]
`

```python
elems = np.array([1, 2, 3, 4, 5, 6])
initializer = np.array(0)
sum_one = scan(


lambda a, x: x[0] - x[1] + a, (elems + 1, elems), initializer)




# sum_one == [1, 2, 3, 4, 5, 6]
```

`python
elems = np.array([1, 0, 0, 0, 0, 0])
initializer = (np.array(0), np.array(1))
fibonaccis = scan(lambda a, _: (a[1], a[0] + a[1]), elems, initializer)
# fibonaccis == ([1, 1, 2, 3, 5, 8], [1, 2, 3, 5, 8, 13])
`






	
tensorflow.scatter_nd(indices, updates, shape, name=None)

	Scatter updates into a new tensor according to indices.

Creates a new tensor by applying sparse updates to individual values or
slices within a tensor (initially zero for numeric, empty for string) of
the given shape according to indices.  This operator is the inverse of the
tf.gather_nd operator which extracts values or slices from a given tensor.

This operation is similar to tensor_scatter_add, except that the tensor is
zero-initialized. Calling tf.scatter_nd(indices, values, shape) is identical
to tensor_scatter_add(tf.zeros(shape, values.dtype), indices, values)

If indices contains duplicates, then their updates are accumulated (summed).

WARNING: The order in which updates are applied is nondeterministic, so the
output will be nondeterministic if indices contains duplicates – because
of some numerical approximation issues, numbers summed in different order
may yield different results.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:


indices.shape[-1] <= shape.rank




The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape


indices.shape[:-1] + shape[indices.shape[-1]:]




The simplest form of scatter is to insert individual elements in a tensor by
index. For example, say we want to insert 4 scattered elements in a rank-1
tensor with 8 elements.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/ScatterNd1.png” alt>
</div>

In Python, this scatter operation would look like this:


	```python

	indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
shape = tf.constant([8])
scatter = tf.scatter_nd(indices, updates, shape)
print(scatter)





```

The resulting tensor would look like this:


[0, 11, 0, 10, 9, 0, 0, 12]




We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/ScatterNd2.png” alt>
</div>

In Python, this scatter operation would look like this:


	```python

	indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],



[7, 7, 7, 7], [8, 8, 8, 8]],





	[[5, 5, 5, 5], [6, 6, 6, 6],

	[7, 7, 7, 7], [8, 8, 8, 8]]])








shape = tf.constant([4, 4, 4])
scatter = tf.scatter_nd(indices, updates, shape)
print(scatter)





```

The resulting tensor would look like this:



	[[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],

	[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]








Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.


	参数

	
	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	updates – A Tensor. Updates to scatter into output.


	shape – A Tensor. Must have the same type as indices.
1-D. The shape of the resulting tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as updates.










	
tensorflow.searchsorted(sorted_sequence, values, side='left', out_type=tf.int32, name=None)

	Searches input tensor for values on the innermost dimension.

A 2-D example:


	```

	
	sorted_sequence = [[0, 3, 9, 9, 10],

	[1, 2, 3, 4, 5]]



	values = [[2, 4, 9],

	[0, 2, 6]]





result = searchsorted(sorted_sequence, values, side=”left”)


	result == [[1, 2, 2],

	[0, 1, 5]]





result = searchsorted(sorted_sequence, values, side=”right”)


	result == [[1, 2, 4],

	[0, 2, 5]]









```


	参数

	
	sorted_sequence – N-D Tensor containing a sorted sequence.


	values – N-D Tensor containing the search values.


	side – ‘left’ or ‘right’; ‘left’ corresponds to lower_bound and ‘right’ to
upper_bound.


	out_type – The output type (int32 or int64).  Default is tf.int32.


	name – Optional name for the operation.






	返回

	An N-D Tensor the size of values containing the result of applying either
lower_bound or upper_bound (depending on side) to each value.  The result
is not a global index to the entire Tensor, but the index in the last
dimension.



	Raises

	ValueError – If the last dimension of sorted_sequence >= 2^31-1 elements.
If the total size of values exceeds 2^31 - 1 elements.
If the first N-1 dimensions of the two tensors don’t match.










	
tensorflow.sequence_mask(lengths, maxlen=None, dtype=tf.bool, name=None)

	Returns a mask tensor representing the first N positions of each cell.

If lengths has shape [d_1, d_2, …, d_n] the resulting tensor mask has
dtype dtype and shape [d_1, d_2, …, d_n, maxlen], with

`
mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])
`

Examples:

```python
tf.sequence_mask([1, 3, 2], 5)  # [[True, False, False, False, False],


#  [True, True, True, False, False],
#  [True, True, False, False, False]]





	tf.sequence_mask([[1, 3],[2,0]])  # [[[True, False, False],

	#   [True, True, True]],
#  [[True, True, False],
#   [False, False, False]]]





```


	参数

	
	lengths – integer tensor, all its values <= maxlen.


	maxlen – scalar integer tensor, size of last dimension of returned tensor.
Default is the maximum value in lengths.


	dtype – output type of the resulting tensor.


	name – name of the op.






	返回

	A mask tensor of shape lengths.shape + (maxlen,), cast to specified dtype.



	Raises

	ValueError – if maxlen is not a scalar.










	
tensorflow.shape(input, out_type=tf.int32, name=None)

	Returns the shape of a tensor.

See also tf.size.

This operation returns a 1-D integer tensor representing the shape of input.
This represents the minimal set of known information at definition time.

For example:

>>> t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
>>> tf.shape(t)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([2, 2, 3], dtype=int32)>
>>> tf.shape(t).numpy()
array([2, 2, 3], dtype=int32)





Note: When using symbolic tensors, such as when using the Keras functional
API, tf.shape() will return the shape of the symbolic tensor.

>>> a = tf.keras.layers.Input((None, 10))
>>> tf.shape(a)
<tf.Tensor ... shape=(3,) dtype=int32>





In these cases, using tf.Tensor.shape will return more informative results.

>>> a.shape
TensorShape([None, None, 10])





tf.shape and Tensor.shape should be identical in eager mode.  Within
tf.function or within a compat.v1 context, not all dimensions may be
known until execution time.


	参数

	
	input – A Tensor or SparseTensor.


	out_type – (Optional) The specified output type of the operation (int32 or
int64). Defaults to tf.int32.


	name – A name for the operation (optional).






	返回

	A Tensor of type out_type.










	
tensorflow.shape_n(input, out_type=tf.int32, name=None)

	Returns shape of tensors.


	参数

	
	input – A list of at least 1 Tensor object with the same type.


	out_type – The specified output type of the operation (int32 or int64).
Defaults to `tf.int32`(optional).


	name – A name for the operation (optional).






	返回

	
	A list with the same length as input of Tensor objects with

	type out_type.
















	
tensorflow.sigmoid(x, name=None)

	Computes sigmoid of x element-wise.

Formula for calculating sigmoid(x): y = 1 / (1 + exp(-x)).

For x in (-inf, inf) => sigmoid(x) in (0, 1)

Example Usage:

If a positive number is large, then its sigmoid will approach to 1 since the
formula will be y = <large_num> / (1 + <large_num>)

>>> x = tf.constant([0.0, 1.0, 50.0, 100.0])
>>> tf.math.sigmoid(x)
<tf.Tensor: shape=(4,), dtype=float32,
numpy=array([0.5      , 0.7310586, 1.       , 1.       ], dtype=float32)>





If a negative number is large, its sigmoid will approach to 0 since the
formula will be y = 1 / (1 + <large_num>)

>>> x = tf.constant([-100.0, -50.0, -1.0, 0.0])
>>> tf.math.sigmoid(x)
<tf.Tensor: shape=(4,), dtype=float32, numpy=
array([0.0000000e+00, 1.9287499e-22, 2.6894143e-01, 0.5],
      dtype=float32)>






	参数

	
	x – A Tensor with type float16, float32, float64, complex64, or
complex128.


	name – A name for the operation (optional).






	返回

	A Tensor with the same type as x.





Usage Example:

>>> x = tf.constant([-128.0, 0.0, 128.0], dtype=tf.float32)
>>> tf.sigmoid(x)
<tf.Tensor: shape=(3,), dtype=float32,
numpy=array([0. , 0.5, 1. ], dtype=float32)>





@compatibility(scipy)
Equivalent to scipy.special.expit
@end_compatibility






	
tensorflow.sign(x, name=None)

	Returns an element-wise indication of the sign of a number.

y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0.

For complex numbers, y = sign(x) = x / |x| if x != 0, otherwise y = 0.

Example usage:

>>> tf.math.sign([0., 2., -3.])
<tf.Tensor: ... numpy=array([ 0.,  1., -1.], dtype=float32)>






	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32,
float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.


	If x is a SparseTensor, returns SparseTensor(x.indices,

	
tf.math.sign(x.values, …), x.dense_shape).




If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.sign(x.values, …), x.dense_shape)
















	
tensorflow.sin(x, name=None)

	Computes sine of x element-wise.


Given an input tensor, this function computes sine of every
element in the tensor. Input range is (-inf, inf) and
output range is [-1,1].

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10, float("inf")])
tf.math.sin(x) ==> [nan -0.4121185 -0.47942555 0.84147096 0.9320391 -0.87329733 -0.54402107 nan]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.sinh(x, name=None)

	Computes hyperbolic sine of x element-wise.


Given an input tensor, this function computes hyperbolic sine of every
element in the tensor. Input range is [-inf,inf] and output range
is [-inf,inf].

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 2, 10, float("inf")])
tf.math.sinh(x) ==> [-inf -4.0515420e+03 -5.2109528e-01 1.1752012e+00 1.5094614e+00 3.6268604e+00 1.1013232e+04 inf]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.size(input, out_type=tf.int32, name=None)

	Returns the size of a tensor.

See also tf.shape.

Returns a 0-D Tensor representing the number of elements in input
of type out_type. Defaults to tf.int32.

For example:

>>> t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
>>> tf.size(t)
<tf.Tensor: shape=(), dtype=int32, numpy=12>






	参数

	
	input – A Tensor or SparseTensor.


	name – A name for the operation (optional).


	out_type – (Optional) The specified non-quantized numeric output type of the
operation. Defaults to tf.int32.






	返回

	A Tensor of type out_type. Defaults to tf.int32.





@compatibility(numpy)
Equivalent to np.size()
@end_compatibility






	
tensorflow.slice(input_, begin, size, name=None)

	Extracts a slice from a tensor.

This operation extracts a slice of size size from a tensor input_ starting
at the location specified by begin. The slice size is represented as a
tensor shape, where size[i] is the number of elements of the ‘i’th dimension
of input_ that you want to slice. The starting location (begin) for the
slice is represented as an offset in each dimension of input_. In other
words, begin[i] is the offset into the i’th dimension of input_ that you
want to slice from.

Note that tf.Tensor.__getitem__ is typically a more pythonic way to
perform slices, as it allows you to write foo[3:7, :-2] instead of
tf.slice(foo, [3, 0], [4, foo.get_shape()[1]-2]).

begin is zero-based; size is one-based. If size[i] is -1,
all remaining elements in dimension i are included in the
slice. In other words, this is equivalent to setting:

size[i] = input_.dim_size(i) - begin[i]

This operation requires that:

0 <= begin[i] <= begin[i] + size[i] <= Di  for i in [0, n]

For example:

```python
t = tf.constant([[[1, 1, 1], [2, 2, 2]],


[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]])




tf.slice(t, [1, 0, 0], [1, 1, 3])  # [[[3, 3, 3]]]
tf.slice(t, [1, 0, 0], [1, 2, 3])  # [[[3, 3, 3],


#   [4, 4, 4]]]





	tf.slice(t, [1, 0, 0], [2, 1, 3])  # [[[3, 3, 3]],

	#  [[5, 5, 5]]]





```


	参数

	
	input – A Tensor.


	begin – An int32 or int64 Tensor.


	size – An int32 or int64 Tensor.


	name – A name for the operation (optional).






	返回

	A Tensor the same type as input_.










	
tensorflow.sort(values, axis=-1, direction='ASCENDING', name=None)

	Sorts a tensor.

Usage:

`python
import tensorflow as tf
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
b = tf.sort(a,axis=-1,direction='ASCENDING',name=None)
c = tf.keras.backend.eval(b)
# Here, c = [  1.     2.8   10.    26.9   62.3  166.32]
`


	参数

	
	values – 1-D or higher numeric Tensor.


	axis – The axis along which to sort. The default is -1, which sorts the last
axis.


	direction – The direction in which to sort the values (‘ASCENDING’ or
‘DESCENDING’).


	name – Optional name for the operation.






	返回

	
	A Tensor with the same dtype and shape as values, with the elements

	sorted along the given axis.









	Raises

	ValueError – If axis is not a constant scalar, or the direction is invalid.










	
tensorflow.space_to_batch(input, block_shape, paddings, name=None)

	SpaceToBatch for N-D tensors of type T.

This operation divides “spatial” dimensions [1, …, M] of the input into a
grid of blocks of shape block_shape, and interleaves these blocks with the
“batch” dimension (0) such that in the output, the spatial dimensions
[1, …, M] correspond to the position within the grid, and the batch
dimension combines both the position within a spatial block and the original
batch position.  Prior to division into blocks, the spatial dimensions of the
input are optionally zero padded according to paddings.  See below for a
precise description.


	参数

	
	input – A Tensor.
N-D with shape input_shape = [batch] + spatial_shape + remaining_shape,
where spatial_shape has M dimensions.


	block_shape – A Tensor. Must be one of the following types: int32, int64.
1-D with shape [M], all values must be >= 1.


	paddings – A Tensor. Must be one of the following types: int32, int64.
2-D with shape [M, 2], all values must be >= 0.


paddings[i] = [pad_start, pad_end] specifies the padding for input dimension
i + 1, which corresponds to spatial dimension i.  It is required that
block_shape[i] divides input_shape[i + 1] + pad_start + pad_end.




This operation is equivalent to the following steps:


	Zero-pad the start and end of dimensions [1, …, M] of the
input according to paddings to produce padded of shape padded_shape.


	Reshape padded to reshaped_padded of shape:


[batch] +
[padded_shape[1] / block_shape[0],



block_shape[0],




…,
padded_shape[M] / block_shape[M-1],
block_shape[M-1]] +




remaining_shape






	Permute dimensions of reshaped_padded to produce
permuted_reshaped_padded of shape:


block_shape +
[batch] +
[padded_shape[1] / block_shape[0],


…,
padded_shape[M] / block_shape[M-1]] +




remaining_shape






	Reshape permuted_reshaped_padded to flatten block_shape into the batch
dimension, producing an output tensor of shape:


[batch * prod(block_shape)] +
[padded_shape[1] / block_shape[0],


…,
padded_shape[M] / block_shape[M-1]] +




remaining_shape








Some examples:


	For the following input of shape [1, 2, 2, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




`
x = [[[[1], [2]], [[3], [4]]]]
`

The output tensor has shape [4, 1, 1, 1] and value:

`
[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]
`


	For the following input of shape [1, 2, 2, 3], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




```
x = [[[[1, 2, 3], [4, 5, 6]],


[[7, 8, 9], [10, 11, 12]]]]




```

The output tensor has shape [4, 1, 1, 3] and value:

`
[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]
`


	For the following input of shape [1, 4, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




```
x = [[[[1],   [2],  [3],  [4]],


[[5],   [6],  [7],  [8]],
[[9],  [10], [11],  [12]],
[[13], [14], [15],  [16]]]]




```

The output tensor has shape [4, 2, 2, 1] and value:

```
x = [[[[1], [3]], [[9], [11]]],


[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]




```


	For the following input of shape [2, 2, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [2, 0]]:




```
x = [[[[1],   [2],  [3],  [4]],



[[5],   [6],  [7],  [8]]],





	[[[9],  [10], [11],  [12]],

	[[13], [14], [15],  [16]]]]








```

The output tensor has shape [8, 1, 3, 1] and value:

```
x = [[[[0], [1], [3]]], [[[0], [9], [11]]],


[[[0], [2], [4]]], [[[0], [10], [12]]],
[[[0], [5], [7]]], [[[0], [13], [15]]],
[[[0], [6], [8]]], [[[0], [14], [16]]]]




```

Among others, this operation is useful for reducing atrous convolution into
regular convolution.




	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.space_to_batch_nd(input, block_shape, paddings, name=None)

	SpaceToBatch for N-D tensors of type T.

This operation divides “spatial” dimensions [1, …, M] of the input into a
grid of blocks of shape block_shape, and interleaves these blocks with the
“batch” dimension (0) such that in the output, the spatial dimensions
[1, …, M] correspond to the position within the grid, and the batch
dimension combines both the position within a spatial block and the original
batch position.  Prior to division into blocks, the spatial dimensions of the
input are optionally zero padded according to paddings.  See below for a
precise description.


	参数

	
	input – A Tensor.
N-D with shape input_shape = [batch] + spatial_shape + remaining_shape,
where spatial_shape has M dimensions.


	block_shape – A Tensor. Must be one of the following types: int32, int64.
1-D with shape [M], all values must be >= 1.


	paddings – A Tensor. Must be one of the following types: int32, int64.
2-D with shape [M, 2], all values must be >= 0.


paddings[i] = [pad_start, pad_end] specifies the padding for input dimension
i + 1, which corresponds to spatial dimension i.  It is required that
block_shape[i] divides input_shape[i + 1] + pad_start + pad_end.




This operation is equivalent to the following steps:


	Zero-pad the start and end of dimensions [1, …, M] of the
input according to paddings to produce padded of shape padded_shape.


	Reshape padded to reshaped_padded of shape:


[batch] +
[padded_shape[1] / block_shape[0],



block_shape[0],




…,
padded_shape[M] / block_shape[M-1],
block_shape[M-1]] +




remaining_shape






	Permute dimensions of reshaped_padded to produce
permuted_reshaped_padded of shape:


block_shape +
[batch] +
[padded_shape[1] / block_shape[0],


…,
padded_shape[M] / block_shape[M-1]] +




remaining_shape






	Reshape permuted_reshaped_padded to flatten block_shape into the batch
dimension, producing an output tensor of shape:


[batch * prod(block_shape)] +
[padded_shape[1] / block_shape[0],


…,
padded_shape[M] / block_shape[M-1]] +




remaining_shape








Some examples:


	For the following input of shape [1, 2, 2, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




`
x = [[[[1], [2]], [[3], [4]]]]
`

The output tensor has shape [4, 1, 1, 1] and value:

`
[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]
`


	For the following input of shape [1, 2, 2, 3], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




```
x = [[[[1, 2, 3], [4, 5, 6]],


[[7, 8, 9], [10, 11, 12]]]]




```

The output tensor has shape [4, 1, 1, 3] and value:

`
[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]
`


	For the following input of shape [1, 4, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:




```
x = [[[[1],   [2],  [3],  [4]],


[[5],   [6],  [7],  [8]],
[[9],  [10], [11],  [12]],
[[13], [14], [15],  [16]]]]




```

The output tensor has shape [4, 2, 2, 1] and value:

```
x = [[[[1], [3]], [[9], [11]]],


[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]




```


	For the following input of shape [2, 2, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [2, 0]]:




```
x = [[[[1],   [2],  [3],  [4]],



[[5],   [6],  [7],  [8]]],





	[[[9],  [10], [11],  [12]],

	[[13], [14], [15],  [16]]]]








```

The output tensor has shape [8, 1, 3, 1] and value:

```
x = [[[[0], [1], [3]]], [[[0], [9], [11]]],


[[[0], [2], [4]]], [[[0], [10], [12]]],
[[[0], [5], [7]]], [[[0], [13], [15]]],
[[[0], [6], [8]]], [[[0], [14], [16]]]]




```

Among others, this operation is useful for reducing atrous convolution into
regular convolution.




	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.split(value, num_or_size_splits, axis=0, num=None, name='split')

	Splits a tensor value into a list of sub tensors.

See also tf.unstack.

If num_or_size_splits is an integer, then value is split along the
dimension axis into num_split smaller tensors. This requires that
value.shape[axis] is divisible by num_split.

If num_or_size_splits is a 1-D Tensor (or list), we call it size_splits
and value is split into len(size_splits) elements. The shape of the i-th
element has the same size as the value except along dimension axis where
the size is size_splits[i].

For example:

>>> x = tf.Variable(tf.random.uniform([5, 30], -1, 1))





Split x into 3 tensors along dimension 1
>>> s0, s1, s2 = tf.split(x, num_or_size_splits=3, axis=1)
>>> tf.shape(s0).numpy()
array([ 5, 10], dtype=int32)

Split x into 3 tensors with sizes [4, 15, 11] along dimension 1
>>> split0, split1, split2 = tf.split(x, [4, 15, 11], 1)
>>> tf.shape(split0).numpy()
array([5, 4], dtype=int32)
>>> tf.shape(split1).numpy()
array([ 5, 15], dtype=int32)
>>> tf.shape(split2).numpy()
array([ 5, 11], dtype=int32)


	参数

	
	value – The Tensor to split.


	num_or_size_splits – Either an integer indicating the number of splits along
axis or a 1-D integer Tensor or Python list containing the sizes of
each output tensor along axis. If a scalar, then it must evenly divide
value.shape[axis]; otherwise the sum of sizes along the split axis
must match that of the value.


	axis – An integer or scalar int32 Tensor. The dimension along which to
split. Must be in the range [-rank(value), rank(value)). Defaults to 0.


	num – Optional, used to specify the number of outputs when it cannot be
inferred from the shape of size_splits.


	name – A name for the operation (optional).






	返回

	if num_or_size_splits is a scalar returns a list of num_or_size_splits
Tensor objects; if num_or_size_splits is a 1-D Tensor returns
num_or_size_splits.get_shape[0] Tensor objects resulting from splitting
value.



	Raises

	ValueError – If num is unspecified and cannot be inferred.










	
tensorflow.sqrt(x, name=None)

	Computes element-wise square root of the input tensor.

Note: This operation does not support integer types.

>>> x = tf.constant([[4.0], [16.0]])
>>> tf.sqrt(x)
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
  array([[2.],
         [4.]], dtype=float32)>
>>> y = tf.constant([[-4.0], [16.0]])
>>> tf.sqrt(y)
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
  array([[nan],
         [ 4.]], dtype=float32)>
>>> z = tf.constant([[-1.0], [16.0]], dtype=tf.complex128)
>>> tf.sqrt(z)
<tf.Tensor: shape=(2, 1), dtype=complex128, numpy=
  array([[0.0+1.j],
         [4.0+0.j]])>





Note: In order to support complex complex, please provide an input tensor
of complex64 or complex128.


	参数

	
	x – A tf.Tensor of type bfloat16, half, float32, float64,
complex64, complex128


	name – A name for the operation (optional).






	返回

	A tf.Tensor of same size, type and sparsity as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.sqrt(x.values, …), x.dense_shape)












	
tensorflow.square(x, name=None)

	Computes square of x element-wise.

I.e., \(y = x * x = x^2\).

>>> tf.math.square([-2., 0., 3.])
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([4., 0., 9.], dtype=float32)>






	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.square(x.values, …), x.dense_shape)












	
tensorflow.squeeze(input, axis=None, name=None)

	Removes dimensions of size 1 from the shape of a tensor.

Given a tensor input, this operation returns a tensor of the same type with
all dimensions of size 1 removed. If you don’t want to remove all size 1
dimensions, you can remove specific size 1 dimensions by specifying
axis.

For example:

`python
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
tf.shape(tf.squeeze(t))  # [2, 3]
`

Or, to remove specific size 1 dimensions:

`python
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
tf.shape(tf.squeeze(t, [2, 4]))  # [1, 2, 3, 1]
`

Unlike the older op tf.compat.v1.squeeze, this op does not accept a
deprecated squeeze_dims argument.

Note: if input is a tf.RaggedTensor, then this operation takes O(N)
time, where N is the number of elements in the squeezed dimensions.


	参数

	
	input – A Tensor. The input to squeeze.


	axis – An optional list of ints. Defaults to []. If specified, only
squeezes the dimensions listed. The dimension index starts at 0. It is an
error to squeeze a dimension that is not 1. Must be in the range
[-rank(input), rank(input)). Must be specified if input is a
RaggedTensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.
Contains the same data as input, but has one or more dimensions of
size 1 removed.



	Raises

	ValueError – The input cannot be converted to a tensor, or the specified
axis cannot be squeezed.










	
tensorflow.stack(values, axis=0, name='stack')

	Stacks a list of rank-R tensors into one rank-(R+1) tensor.

See also tf.concat, tf.tile, tf.repeat.

Packs the list of tensors in values into a tensor with rank one higher than
each tensor in values, by packing them along the axis dimension.
Given a list of length N of tensors of shape (A, B, C);

if axis == 0 then the output tensor will have the shape (N, A, B, C).
if axis == 1 then the output tensor will have the shape (A, N, B, C).
Etc.

For example:

>>> x = tf.constant([1, 4])
>>> y = tf.constant([2, 5])
>>> z = tf.constant([3, 6])
>>> tf.stack([x, y, z])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[1, 4],
       [2, 5],
       [3, 6]], dtype=int32)>
>>> tf.stack([x, y, z], axis=1)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)>





This is the opposite of unstack.  The numpy equivalent is np.stack

>>> np.array_equal(np.stack([x, y, z]), tf.stack([x, y, z]))
True






	参数

	
	values – A list of Tensor objects with the same shape and type.


	axis – An int. The axis to stack along. Defaults to the first dimension.
Negative values wrap around, so the valid range is [-(R+1), R+1).


	name – A name for this operation (optional).






	返回

	A stacked Tensor with the same type as values.



	返回类型

	output



	Raises

	ValueError – If axis is out of the range [-(R+1), R+1).










	
tensorflow.stop_gradient(input, name=None)

	Stops gradient computation.

When executed in a graph, this op outputs its input tensor as-is.

When building ops to compute gradients, this op prevents the contribution of
its inputs to be taken into account.  Normally, the gradient generator adds ops
to a graph to compute the derivatives of a specified ‘loss’ by recursively
finding out inputs that contributed to its computation.  If you insert this op
in the graph it inputs are masked from the gradient generator.  They are not
taken into account for computing gradients.

This is useful any time you want to compute a value with TensorFlow but need
to pretend that the value was a constant. Some examples include:


	The EM algorithm where the M-step should not involve backpropagation
through the output of the E-step.


	Contrastive divergence training of Boltzmann machines where, when
differentiating the energy function, the training must not backpropagate
through the graph that generated the samples from the model.


	Adversarial training, where no backprop should happen through the adversarial
example generation process.





	参数

	
	input – A Tensor.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.strided_slice(input_, begin, end, strides=None, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0, var=None, name=None)

	Extracts a strided slice of a tensor (generalized python array indexing).

Instead of calling this op directly most users will want to use the
NumPy-style slicing syntax (e.g. `tensor[…, 3:4:-1, tf.newaxis, 3]`), which
is supported via `tf.Tensor.__getitem__` and `tf.Variable.__getitem__`.
The interface of this op is a low-level encoding of the slicing syntax.

Roughly speaking, this op extracts a slice of size (end-begin)/stride
from the given input_ tensor. Starting at the location specified by begin
the slice continues by adding stride to the index until all dimensions are
not less than end.
Note that a stride can be negative, which causes a reverse slice.

Given a Python slice input[spec0, spec1, …, specn],
this function will be called as follows.

begin, end, and strides will be vectors of length n.
n in general is not equal to the rank of the input_ tensor.

In each mask field (begin_mask, end_mask, ellipsis_mask,
new_axis_mask, shrink_axis_mask) the ith bit will correspond to
the ith spec.

If the ith bit of begin_mask is set, begin[i] is ignored and
the fullest possible range in that dimension is used instead.
end_mask works analogously, except with the end range.

foo[5:,:,:3] on a 7x8x9 tensor is equivalent to foo[5:7,0:8,0:3].
foo[::-1] reverses a tensor with shape 8.

If the ith bit of ellipsis_mask is set, as many unspecified dimensions
as needed will be inserted between other dimensions. Only one
non-zero bit is allowed in ellipsis_mask.

For example foo[3:5,…,4:5] on a shape 10x3x3x10 tensor is
equivalent to foo[3:5,:,:,4:5] and
foo[3:5,…] is equivalent to foo[3:5,:,:,:].

If the ith bit of new_axis_mask is set, then begin,
end, and stride are ignored and a new length 1 dimension is
added at this point in the output tensor.

For example,
foo[:4, tf.newaxis, :2] would produce a shape (4, 1, 2) tensor.

If the ith bit of shrink_axis_mask is set, it implies that the ith
specification shrinks the dimensionality by 1, taking on the value at index
begin[i]. end[i] and strides[i] are ignored in this case. For example in
Python one might do foo[:, 3, :] which would result in shrink_axis_mask
equal to 2.

NOTE: begin and end are zero-indexed.
strides entries must be non-zero.

```python
t = tf.constant([[[1, 1, 1], [2, 2, 2]],


[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]])




tf.strided_slice(t, [1, 0, 0], [2, 1, 3], [1, 1, 1])  # [[[3, 3, 3]]]
tf.strided_slice(t, [1, 0, 0], [2, 2, 3], [1, 1, 1])  # [[[3, 3, 3],


#   [4, 4, 4]]]





	tf.strided_slice(t, [1, -1, 0], [2, -3, 3], [1, -1, 1])  # [[[4, 4, 4],

	#   [3, 3, 3]]]





```


	参数

	
	input – A Tensor.


	begin – An int32 or int64 Tensor.


	end – An int32 or int64 Tensor.


	strides – An int32 or int64 Tensor.


	begin_mask – An int32 mask.


	end_mask – An int32 mask.


	ellipsis_mask – An int32 mask.


	new_axis_mask – An int32 mask.


	shrink_axis_mask – An int32 mask.


	var – The variable corresponding to input_ or None


	name – A name for the operation (optional).






	返回

	A Tensor the same type as input.










	
tensorflow.subtract(x, y, name=None)

	Returns x - y element-wise.

NOTE: Subtract supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.switch_case(branch_index, branch_fns, default=None, name='switch_case')

	Create a switch/case operation, i.e. an integer-indexed conditional.

See also tf.case.

This op can be substantially more efficient than tf.case when exactly one
branch will be selected. tf.switch_case is more like a C++ switch/case
statement than tf.case, which is more like an if/elif/elif/else chain.

The branch_fns parameter is either a dict from int to callables, or list
of (int, callable) pairs, or simply a list of callables (in which case the
index is implicitly the key). The branch_index Tensor is used to select an
element in branch_fns with matching int key, falling back to default
if none match, or max(keys) if no default is provided. The keys must form
a contiguous set from 0 to len(branch_fns) - 1.

tf.switch_case supports nested structures as implemented in tf.nest. All
callables must return the same (possibly nested) value structure of lists,
tuples, and/or named tuples.

Example:

Pseudocode:

```c++
switch (branch_index) {  // c-style switch


case 0: return 17;
case 1: return 31;
default: return -1;




or
`python
branches = {0: lambda: 17, 1: lambda: 31}
branches.get(branch_index, lambda: -1)()
`

Expressions:

`python
def f1(): return tf.constant(17)
def f2(): return tf.constant(31)
def f3(): return tf.constant(-1)
r = tf.switch_case(branch_index, branch_fns={0: f1, 1: f2}, default=f3)
# Equivalent: tf.switch_case(branch_index, branch_fns={0: f1, 1: f2, 2: f3})
`


	参数

	
	branch_index – An int Tensor specifying which of branch_fns should be
executed.


	branch_fns – A dict mapping int`s to callables, or a `list of
(int, callable) pairs, or simply a list of callables (in which case the
index serves as the key). Each callable must return a matching structure
of tensors.


	default – Optional callable that returns a structure of tensors.


	name – A name for this operation (optional).






	返回

	The tensors returned by the callable identified by branch_index, or those
returned by default if no key matches and default was provided, or those
returned by the max-keyed branch_fn if no default is provided.



	Raises

	
	TypeError – If branch_fns is not a list/dictionary.


	TypeError – If branch_fns is a list but does not contain 2-tuples or
callables.


	TypeError – If fns[i] is not callable for any i, or default is not
callable.













	
tensorflow.tan(x, name=None)

	Computes tan of x element-wise.


Given an input tensor, this function computes tangent of every
element in the tensor. Input range is (-inf, inf) and
output range is (-inf, inf). If input lies outside the boundary, nan
is returned.

`python
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.tan(x) ==> [nan 0.45231566 -0.5463025 1.5574077 2.572152 -1.7925274 0.32097113 nan]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.tanh(x, name=None)

	Computes hyperbolic tangent of x element-wise.


Given an input tensor, this function computes hyperbolic tangent of every
element in the tensor. Input range is [-inf, inf] and
output range is [-1,1].

`python
x = tf.constant([-float("inf"), -5, -0.5, 1, 1.2, 2, 3, float("inf")])
tf.math.tanh(x) ==> [-1. -0.99990916 -0.46211717 0.7615942 0.8336547 0.9640276 0.9950547 1.]
`





	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.

If x is a SparseTensor, returns
SparseTensor(x.indices, tf.math.tanh(x.values, …), x.dense_shape)












	
tensorflow.tensor_scatter_nd_add(tensor, indices, updates, name=None)

	Adds sparse updates to an existing tensor according to indices.

This operation creates a new tensor by adding sparse updates to the passed
in tensor.
This operation is very similar to tf.scatter_nd_add, except that the updates
are added onto an existing tensor (as opposed to a variable). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:


indices.shape[-1] <= shape.rank




The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape


indices.shape[:-1] + shape[indices.shape[-1]:]




The simplest form of tensor_scatter_add is to add individual elements to a
tensor by index. For example, say we want to add 4 elements in a rank-1
tensor with 8 elements.

In Python, this scatter add operation would look like this:


	```python

	indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
tensor = tf.ones([8], dtype=tf.int32)
updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
print(updated)





```

The resulting tensor would look like this:


[1, 12, 1, 11, 10, 1, 1, 13]




We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter add operation would look like this:


	```python

	indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],



[7, 7, 7, 7], [8, 8, 8, 8]],





	[[5, 5, 5, 5], [6, 6, 6, 6],

	[7, 7, 7, 7], [8, 8, 8, 8]]])








tensor = tf.ones([4, 4, 4],dtype=tf.int32)
updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
print(updated)





```

The resulting tensor would look like this:



	[[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],

	[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]








Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.


	参数

	
	tensor – A Tensor. Tensor to copy/update.


	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	updates – A Tensor. Must have the same type as tensor.
Updates to scatter into output.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.tensor_scatter_nd_sub(tensor, indices, updates, name=None)

	Subtracts sparse updates from an existing tensor according to indices.

This operation creates a new tensor by subtracting sparse updates from the
passed in tensor.
This operation is very similar to tf.scatter_nd_sub, except that the updates
are subtracted from an existing tensor (as opposed to a variable). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:


indices.shape[-1] <= shape.rank




The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape


indices.shape[:-1] + shape[indices.shape[-1]:]




The simplest form of tensor_scatter_sub is to subtract individual elements
from a tensor by index. For example, say we want to insert 4 scattered elements
in a rank-1 tensor with 8 elements.

In Python, this scatter subtract operation would look like this:


	```python

	indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
tensor = tf.ones([8], dtype=tf.int32)
updated = tf.tensor_scatter_nd_sub(tensor, indices, updates)
print(updated)





```

The resulting tensor would look like this:


[1, -10, 1, -9, -8, 1, 1, -11]




We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter add operation would look like this:


	```python

	indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],



[7, 7, 7, 7], [8, 8, 8, 8]],





	[[5, 5, 5, 5], [6, 6, 6, 6],

	[7, 7, 7, 7], [8, 8, 8, 8]]])








tensor = tf.ones([4, 4, 4],dtype=tf.int32)
updated = tf.tensor_scatter_nd_sub(tensor, indices, updates)
print(updated)





```

The resulting tensor would look like this:



	[[[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]],

	[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
[[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]








Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.


	参数

	
	tensor – A Tensor. Tensor to copy/update.


	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	updates – A Tensor. Must have the same type as tensor.
Updates to scatter into output.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.tensor_scatter_nd_update(tensor, indices, updates, name=None)

	Scatter updates into an existing tensor according to indices.

This operation creates a new tensor by applying sparse updates to the passed
in tensor.
This operation is very similar to tf.scatter_nd, except that the updates are
scattered onto an existing tensor (as opposed to a zero-tensor). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.

If indices contains duplicates, then their updates are accumulated (summed).

WARNING: The order in which updates are applied is nondeterministic, so the
output will be nondeterministic if indices contains duplicates – because
of some numerical approximation issues, numbers summed in different order
may yield different results.

indices is an integer tensor containing indices into a new tensor of shape
shape.  The last dimension of indices can be at most the rank of shape:


indices.shape[-1] <= shape.rank




The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = shape.rank) or slices
(if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of
shape.  updates is a tensor with shape


indices.shape[:-1] + shape[indices.shape[-1]:]




The simplest form of scatter is to insert individual elements in a tensor by
index. For example, say we want to insert 4 scattered elements in a rank-1
tensor with 8 elements.

<div style=”width:70%; margin:auto; margin-bottom:10px; margin-top:20px;”>
<img style=”width:100%” src=”https://www.tensorflow.org/images/ScatterNd1.png” alt>
</div>

In Python, this scatter operation would look like this:

>>> indices = tf.constant([[4], [3], [1], [7]])
>>> updates = tf.constant([9, 10, 11, 12])
>>> tensor = tf.ones([8], dtype=tf.int32)
>>> print(tf.tensor_scatter_nd_update(tensor, indices, updates))
tf.Tensor([ 1 11  1 10  9  1  1 12], shape=(8,), dtype=int32)





We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.

In Python, this scatter operation would look like this:

>>> indices = tf.constant([[0], [2]])
>>> updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
...                         [7, 7, 7, 7], [8, 8, 8, 8]],
...                        [[5, 5, 5, 5], [6, 6, 6, 6],
...                         [7, 7, 7, 7], [8, 8, 8, 8]]])
>>> tensor = tf.ones([4, 4, 4], dtype=tf.int32)
>>> print(tf.tensor_scatter_nd_update(tensor, indices, updates).numpy())
[[[5 5 5 5]
  [6 6 6 6]
  [7 7 7 7]
  [8 8 8 8]]
 [[1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]]
 [[5 5 5 5]
  [6 6 6 6]
  [7 7 7 7]
  [8 8 8 8]]
 [[1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]]]





Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.


	参数

	
	tensor – A Tensor. Tensor to copy/update.


	indices – A Tensor. Must be one of the following types: int32, int64.
Index tensor.


	updates – A Tensor. Must have the same type as tensor.
Updates to scatter into output.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as tensor.










	
tensorflow.tensordot(a, b, axes, name=None)

	Tensor contraction of a and b along specified axes and outer product.

Tensordot (also known as tensor contraction) sums the product of elements
from a and b over the indices specified by a_axes and b_axes.
The lists a_axes and b_axes specify those pairs of axes along which to
contract the tensors. The axis a_axes[i] of a must have the same dimension
as axis b_axes[i] of b for all i in range(0, len(a_axes)). The lists
a_axes and b_axes must have identical length and consist of unique
integers that specify valid axes for each of the tensors. Additionally
outer product is supported by passing axes=0.

This operation corresponds to numpy.tensordot(a, b, axes).

Example 1: When a and b are matrices (order 2), the case axes = 1
is equivalent to matrix multiplication.

Example 2: When a and b are matrices (order 2), the case
axes = [[1], [0]] is equivalent to matrix multiplication.

Example 3: When a and b are matrices (order 2), the case axes=0 gives
the outer product, a tensor of order 4.

Example 4: Suppose that \(a_{ijk}\) and \(b_{lmn}\) represent two
tensors of order 3. Then, contract(a, b, [[0], [2]]) is the order 4 tensor
\(c_{jklm}\) whose entry
corresponding to the indices \((j,k,l,m)\) is given by:

\( c_{jklm} = sum_i a_{ijk} b_{lmi} \).

In general, order(c) = order(a) + order(b) - 2*len(axes[0]).


	参数

	
	a – Tensor of type float32 or float64.


	b – Tensor with the same type as a.


	axes – Either a scalar N, or a list or an int32 Tensor of shape [2, k].
If axes is a scalar, sum over the last N axes of a and the first N axes of
b in order. If axes is a list or Tensor the first and second row contain
the set of unique integers specifying axes along which the contraction is
computed, for a and b, respectively. The number of axes for a and
b must be equal. If axes=0, computes the outer product between a and
b.


	name – A name for the operation (optional).






	返回

	A Tensor with the same type as a.



	Raises

	
	ValueError – If the shapes of a, b, and axes are incompatible.


	IndexError – If the values in axes exceed the rank of the corresponding
tensor.













	
tensorflow.tile(input, multiples, name=None)

	Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by replicating input multiples times.
The output tensor’s i’th dimension has input.dims(i) * multiples[i] elements,
and the values of input are replicated multiples[i] times along the ‘i’th
dimension. For example, tiling [a b c d] by [2] produces
[a b c d a b c d].

>>> a = tf.constant([[1,2,3],[4,5,6]], tf.int32)
>>> b = tf.constant([1,2], tf.int32)
>>> tf.tile(a, b)
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
       [4, 5, 6, 4, 5, 6]], dtype=int32)>
>>> c = tf.constant([2,1], tf.int32)
>>> tf.tile(a, c)
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6],
       [1, 2, 3],
       [4, 5, 6]], dtype=int32)>
>>> d = tf.constant([2,2], tf.int32)
>>> tf.tile(a, d)
<tf.Tensor: shape=(4, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
       [4, 5, 6, 4, 5, 6],
       [1, 2, 3, 1, 2, 3],
       [4, 5, 6, 4, 5, 6]], dtype=int32)>






	参数

	
	input – A Tensor. 1-D or higher.


	multiples – A Tensor. Must be one of the following types: int32, int64.
1-D. Length must be the same as the number of dimensions in input


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as input.










	
tensorflow.timestamp(name=None)

	Provides the time since epoch in seconds.

Returns the timestamp as a float64 for seconds since the Unix epoch.

Note: the timestamp is computed when the op is executed, not when it is added
to the graph.


	参数

	name – A name for the operation (optional).



	返回

	A Tensor of type float64.










	
tensorflow.transpose(a, perm=None, conjugate=False, name='transpose')

	Transposes a, where a is a Tensor.

Permutes the dimensions according to the value of perm.

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1…0), where n is the rank
of the input tensor. Hence by default, this operation performs a regular
matrix transpose on 2-D input Tensors.

If conjugate is True and a.dtype is either complex64 or complex128
then the values of a are conjugated and transposed.

@compatibility(numpy)
In numpy transposes are memory-efficient constant time operations as they
simply return a new view of the same data with adjusted strides.

TensorFlow does not support strides, so transpose returns a new tensor with
the items permuted.
@end_compatibility

For example:

>>> x = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.transpose(x)
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[1, 4],
       [2, 5],
       [3, 6]], dtype=int32)>





Equivalently, you could call tf.transpose(x, perm=[1, 0]).

If x is complex, setting conjugate=True gives the conjugate transpose:

>>> x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
...                  [4 + 4j, 5 + 5j, 6 + 6j]])
>>> tf.transpose(x, conjugate=True)
<tf.Tensor: shape=(3, 2), dtype=complex128, numpy=
array([[1.-1.j, 4.-4.j],
       [2.-2.j, 5.-5.j],
       [3.-3.j, 6.-6.j]])>





‘perm’ is more useful for n-dimensional tensors where n > 2:

>>> x = tf.constant([[[ 1,  2,  3],
...                   [ 4,  5,  6]],
...                  [[ 7,  8,  9],
...                   [10, 11, 12]]])





As above, simply calling tf.transpose will default to perm=[2,1,0].

To take the transpose of the matrices in dimension-0 (such as when you are
transposing matrices where 0 is the batch dimesnion), you would set
perm=[0,2,1].

>>> tf.transpose(x, perm=[0, 2, 1])
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[ 1,  4],
        [ 2,  5],
        [ 3,  6]],
        [[ 7, 10],
        [ 8, 11],
        [ 9, 12]]], dtype=int32)>





Note: This has a shorthand linalg.matrix_transpose):


	参数

	
	a – A Tensor.


	perm – A permutation of the dimensions of a.  This should be a vector.


	conjugate – Optional bool. Setting it to True is mathematically equivalent
to tf.math.conj(tf.transpose(input)).


	name – A name for the operation (optional).






	返回

	A transposed Tensor.










	
tensorflow.truediv(x, y, name=None)

	Divides x / y elementwise (using Python 3 division operator semantics).

NOTE: Prefer using the Tensor operator or tf.divide which obey Python
division operator semantics.

This function forces Python 3 division operator semantics where all integer
arguments are cast to floating types first.   This op is generated by normal
x / y division in Python 3 and in Python 2.7 with
from __future__ import division.  If you want integer division that rounds
down, use x // y or tf.math.floordiv.

x and y must have the same numeric type.  If the inputs are floating
point, the output will have the same type.  If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).


	参数

	
	x – Tensor numerator of numeric type.


	y – Tensor denominator of numeric type.


	name – A name for the operation (optional).






	返回

	x / y evaluated in floating point.



	Raises

	TypeError – If x and y have different dtypes.










	
tensorflow.truncatediv(x, y, name=None)

	Returns x / y element-wise for integer types.

Truncation designates that negative numbers will round fractional quantities
toward zero. I.e. -7 / 5 = -1. This matches C semantics but it is different
than Python semantics. See FloorDiv for a division function that matches
Python Semantics.

NOTE: truncatediv supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.truncatemod(x, y, name=None)

	Returns element-wise remainder of division. This emulates C semantics in that

the result here is consistent with a truncating divide. E.g. truncate(x / y) *
y + truncate_mod(x, y) = x.

NOTE: truncatemod supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)


	参数

	
	x – A Tensor. Must be one of the following types: int32, int64, bfloat16, half, float32, float64.


	y – A Tensor. Must have the same type as x.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as x.










	
tensorflow.tuple(tensors, control_inputs=None, name=None)

	Group tensors together.

This creates a tuple of tensors with the same values as the tensors
argument, except that the value of each tensor is only returned after the
values of all tensors have been computed.

control_inputs contains additional ops that have to finish before this op
finishes, but whose outputs are not returned.

This can be used as a “join” mechanism for parallel computations: all the
argument tensors can be computed in parallel, but the values of any tensor
returned by tuple are only available after all the parallel computations
are done.

See also tf.group and
tf.control_dependencies.


	参数

	
	tensors – A list of Tensor`s or `IndexedSlices, some entries can be None.


	control_inputs – List of additional ops to finish before returning.


	name – (optional) A name to use as a name_scope for the operation.






	返回

	Same as tensors.



	Raises

	
	ValueError – If tensors does not contain any Tensor or IndexedSlices.


	TypeError – If control_inputs is not a list of Operation or Tensor
objects.













	
tensorflow.unique(x, out_idx=tf.int32, name=None)

	Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x; x does not need to be sorted.
This operation also returns a tensor idx the same size as x that contains
the index of each value of x in the unique output y. In other words:

y[idx[i]] = x[i] for i in [0, 1,…,rank(x) - 1]

Examples:

`
# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx = unique(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
`

`
# tensor 'x' is [4, 5, 1, 2, 3, 3, 4, 5]
y, idx = unique(x)
y ==> [4, 5, 1, 2, 3]
idx ==> [0, 1, 2, 3, 4, 4, 0, 1]
`


	参数

	
	x – A Tensor. 1-D.


	out_idx – An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.


	name – A name for the operation (optional).






	返回

	A tuple of Tensor objects (y, idx).

y: A Tensor. Has the same type as x.
idx: A Tensor of type out_idx.












	
tensorflow.unique_with_counts(x, out_idx=tf.int32, name=None)

	Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x. This operation also returns a
tensor idx the same size as x that contains the index of each value of x
in the unique output y. Finally, it returns a third tensor count that
contains the count of each element of y in x. In other words:

y[idx[i]] = x[i] for i in [0, 1,…,rank(x) - 1]

For example:

`
# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx, count = unique_with_counts(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
count ==> [2, 1, 3, 1, 2]
`


	参数

	
	x – A Tensor. 1-D.


	out_idx – An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.


	name – A name for the operation (optional).






	返回

	A tuple of Tensor objects (y, idx, count).

y: A Tensor. Has the same type as x.
idx: A Tensor of type out_idx.
count: A Tensor of type out_idx.












	
tensorflow.unravel_index(indices, dims, name=None)

	Converts an array of flat indices into a tuple of coordinate arrays.

Example:

`
y = tf.unravel_index(indices=[2, 5, 7], dims=[3, 3])
# 'dims' represent a hypothetical (3, 3) tensor of indices:
# [[0, 1, *2*],
#  [3, 4, *5*],
#  [6, *7*, 8]]
# For each entry from 'indices', this operation returns
# its coordinates (marked with '*'), such as
# 2 ==> (0, 2)
# 5 ==> (1, 2)
# 7 ==> (2, 1)
y ==> [[0, 1, 2], [2, 2, 1]]
`

@compatibility(numpy)
Equivalent to np.unravel_index
@end_compatibility


	参数

	
	indices – A Tensor. Must be one of the following types: int32, int64.
An 0-D or 1-D int Tensor whose elements are indices into the
flattened version of an array of dimensions dims.


	dims – A Tensor. Must have the same type as indices.
An 1-D int Tensor. The shape of the array to use for unraveling
indices.


	name – A name for the operation (optional).






	返回

	A Tensor. Has the same type as indices.










	
tensorflow.unstack(value, num=None, axis=0, name='unstack')

	Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors.

Unpacks num tensors from value by chipping it along the axis dimension.
If num is not specified (the default), it is inferred from value’s shape.
If value.shape[axis] is not known, ValueError is raised.

For example, given a tensor of shape (A, B, C, D);


	If axis == 0 then the i’th tensor in output is the slice

	value[i, :, :, :] and each tensor in output will have shape (B, C, D).
(Note that the dimension unpacked along is gone, unlike split).



	If axis == 1 then the i’th tensor in output is the slice

	value[:, i, :, :] and each tensor in output will have shape (A, C, D).





Etc.

This is the opposite of stack.


	参数

	
	value – A rank R > 0 Tensor to be unstacked.


	num – An int. The length of the dimension axis. Automatically inferred if
None (the default).


	axis – An int. The axis to unstack along. Defaults to the first dimension.
Negative values wrap around, so the valid range is [-R, R).


	name – A name for the operation (optional).






	返回

	The list of Tensor objects unstacked from value.



	Raises

	
	ValueError – If num is unspecified and cannot be inferred.


	ValueError – If axis is out of the range [-R, R).













	
tensorflow.variable_creator_scope(variable_creator)

	Scope which defines a variable creation function to be used by variable().

variable_creator is expected to be a function with the following signature:


	```

	def variable_creator(next_creator, **kwargs)





```

The creator is supposed to eventually call the next_creator to create a
variable if it does want to create a variable and not call Variable or
ResourceVariable directly. This helps make creators composable. A creator may
choose to create multiple variables, return already existing variables, or
simply register that a variable was created and defer to the next creators in
line. Creators can also modify the keyword arguments seen by the next
creators.

Custom getters in the variable scope will eventually resolve down to these
custom creators when they do create variables.

The valid keyword arguments in kwds are:



	
	initial_value: A Tensor, or Python object convertible to a Tensor,

	which is the initial value for the Variable. The initial value must have
a shape specified unless validate_shape is set to False. Can also be a
callable with no argument that returns the initial value when called. In
that case, dtype must be specified. (Note that initializer functions
from init_ops.py must first be bound to a shape before being used here.)







	
	trainable: If True, the default, GradientTapes automatically watch

	uses of this Variable.







	
	validate_shape: If False, allows the variable to be initialized with a

	value of unknown shape. If True, the default, the shape of
initial_value must be known.







	
	caching_device: Optional device string describing where the Variable

	should be cached for reading.  Defaults to the Variable’s device.
If not None, caches on another device.  Typical use is to cache
on the device where the Ops using the Variable reside, to deduplicate
copying through Switch and other conditional statements.







	
	name: Optional name for the variable. Defaults to ‘Variable’ and gets

	
uniquified automatically.





	dtype: If set, initial_value will be converted to the given type.

	If None, either the datatype will be kept (if initial_value is
a Tensor), or convert_to_tensor will decide.











	
	constraint: A constraint function to be applied to the variable after

	updates by some algorithms.







	
	synchronization: Indicates when a distributed a variable will be

	aggregated. Accepted values are constants defined in the class
tf.VariableSynchronization. By default the synchronization is set to
AUTO and the current DistributionStrategy chooses
when to synchronize.







	
	aggregation: Indicates how a distributed variable will be aggregated.

	Accepted values are constants defined in the class
tf.VariableAggregation.












This set may grow over time, so it’s important the signature of creators is as
mentioned above.


	参数

	variable_creator – the passed creator



	Yields

	A scope in which the creator is active










	
tensorflow.vectorized_map(fn, elems)

	Parallel map on the list of tensors unpacked from elems on dimension 0.

This method works similar to tf.map_fn but is optimized to run much faster,
possibly with a much larger memory footprint. The speedups are obtained by
vectorization (see https://arxiv.org/pdf/1903.04243.pdf). The idea behind
vectorization is to semantically launch all the invocations of fn in
parallel and fuse corresponding operations across all these invocations. This
fusion is done statically at graph generation time and the generated code is
often similar in performance to a manually fused version.

Because tf.vectorized_map fully parallelizes the batch, this method will
generally be significantly faster than using tf.map_fn, especially in eager
mode. However this is an experimental feature and currently has a lot of
limitations:



	There should be no data dependency between the different semantic
invocations of fn, i.e. it should be safe to map the elements of the
inputs in any order.


	Stateful kernels may mostly not be supported since these often imply a
data dependency. We do support a limited set of such stateful kernels
though (like RandomFoo, Variable operations like reads, etc).


	fn has limited support for control flow operations. tf.cond in
particular is not supported.


	fn should return nested structure of Tensors or Operations. However
if an Operation is returned, it should have zero outputs.


	The shape and dtype of any intermediate or output tensors in the
computation of fn should not depend on the input to fn.







Examples:
```python
def outer_product(a):


return tf.tensordot(a, a, 0)




batch_size = 100
a = tf.ones((batch_size, 32, 32))
c = tf.vectorized_map(outer_product, a)
assert c.shape == (batch_size, 32, 32, 32, 32)
```

```python
# Computing per-example gradients

batch_size = 10
num_features = 32
layer = tf.keras.layers.Dense(1)


	def model_fn(arg):

	
	with tf.GradientTape() as g:

	inp, label = arg
inp = tf.expand_dims(inp, 0)
label = tf.expand_dims(label, 0)
prediction = layer(inp)
loss = tf.nn.l2_loss(label - prediction)





return g.gradient(loss, (layer.kernel, layer.bias))





inputs = tf.random.uniform([batch_size, num_features])
labels = tf.random.uniform([batch_size, 1])
per_example_gradients = tf.vectorized_map(model_fn, (inputs, labels))
assert per_example_gradients[0].shape == (batch_size, num_features, 1)
assert per_example_gradients[1].shape == (batch_size, 1)
```


	参数

	
	fn – The callable to be performed. It accepts one argument, which will have
the same (possibly nested) structure as elems, and returns a possibly
nested structure of Tensors and Operations, which may be different than
the structure of elems.


	elems – A tensor or (possibly nested) sequence of tensors, each of which will
be unpacked along their first dimension. The nested sequence of the
resulting slices will be mapped over by fn.






	返回

	A tensor or (possibly nested) sequence of tensors. Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, from first to last.










	
tensorflow.where(condition, x=None, y=None, name=None)

	Return the elements where condition is True (multiplexing x and y).

This operator has two modes: in one mode both x and y are provided, in
another mode neither are provided. condition is always expected to be a
tf.Tensor of type bool.

#### Retrieving indices of True elements

If x and y are not provided (both are None):

tf.where will return the indices of condition that are True, in
the form of a 2-D tensor with shape (n, d).
(Where n is the number of matching indices in condition,
and d is the number of dimensions in condition).

Indices are output in row-major order.

>>> tf.where([True, False, False, True])
<tf.Tensor: shape=(2, 1), dtype=int64, numpy=
array([[0],
       [3]])>





>>> tf.where([[True, False], [False, True]])
<tf.Tensor: shape=(2, 2), dtype=int64, numpy=
array([[0, 0],
       [1, 1]])>





>>> tf.where([[[True, False], [False, True], [True, True]]])
<tf.Tensor: shape=(4, 3), dtype=int64, numpy=
array([[0, 0, 0],
       [0, 1, 1],
       [0, 2, 0],
       [0, 2, 1]])>





#### Multiplexing between x and y

If x and y are provided (both have non-None values):

tf.where will choose an output shape from the shapes of condition, x,
and y that all three shapes are
[broadcastable](https://docs.scipy.org/doc/numpy/reference/ufuncs.html) to.

The condition tensor acts as a mask that chooses whether the corresponding
element / row in the output should be taken from x
(if the elemment in condition is True) or `y (if it is false).

>>> tf.where([True, False, False, True], [1,2,3,4], [100,200,300,400])
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([  1, 200, 300,   4],
dtype=int32)>
>>> tf.where([True, False, False, True], [1,2,3,4], [100])
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([  1, 100, 100,   4],
dtype=int32)>
>>> tf.where([True, False, False, True], [1,2,3,4], 100)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([  1, 100, 100,   4],
dtype=int32)>
>>> tf.where([True, False, False, True], 1, 100)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([  1, 100, 100,   1],
dtype=int32)>





>>> tf.where(True, [1,2,3,4], 100)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([1, 2, 3, 4],
dtype=int32)>
>>> tf.where(False, [1,2,3,4], 100)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([100, 100, 100, 100],
dtype=int32)>






	参数

	
	condition – A tf.Tensor of type bool


	x – If provided, a Tensor which is of the same type as y, and has a shape
broadcastable with condition and y.


	y – If provided, a Tensor which is of the same type as y, and has a shape
broadcastable with condition and x.


	name – A name of the operation (optional).






	返回

	
	A Tensor with the same type as x and y, and shape that

	is broadcast from condition, x, and y.





Otherwise, a Tensor with shape (num_true, dim_size(condition)).





	返回类型

	If x and y are provided



	Raises

	ValueError – When exactly one of x or y is non-None, or the shapes
are not all broadcastable.










	
tensorflow.while_loop(cond, body, loop_vars, shape_invariants=None, parallel_iterations=10, back_prop=True, swap_memory=False, maximum_iterations=None, name=None)

	Repeat body while the condition cond is true. (deprecated argument values)

Warning: SOME ARGUMENT VALUES ARE DEPRECATED: (back_prop=False). They will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.while_loop(c, b, vars, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.while_loop(c, b, vars))

cond is a callable returning a boolean scalar tensor. body is a callable
returning a (possibly nested) tuple, namedtuple or list of tensors of the same
arity (length and structure) and types as loop_vars. loop_vars is a
(possibly nested) tuple, namedtuple or list of tensors that is passed to both
cond and body. cond and body both take as many arguments as there are
loop_vars.

In addition to regular Tensors or IndexedSlices, the body may accept and
return TensorArray objects.  The flows of the TensorArray objects will
be appropriately forwarded between loops and during gradient calculations.

Note that while_loop calls cond and body exactly once (inside the
call to while_loop, and not at all during Session.run()). while_loop
stitches together the graph fragments created during the cond and body
calls with some additional graph nodes to create the graph flow that
repeats body until cond returns false.

For correctness, tf.while_loop() strictly enforces shape invariants for
the loop variables. A shape invariant is a (possibly partial) shape that
is unchanged across the iterations of the loop. An error will be raised
if the shape of a loop variable after an iteration is determined to be more
general than or incompatible with its shape invariant. For example, a shape
of [11, None] is more general than a shape of [11, 17], and [11, 21] is not
compatible with [11, 17]. By default (if the argument shape_invariants is
not specified), it is assumed that the initial shape of each tensor in
loop_vars is the same in every iteration. The shape_invariants argument
allows the caller to specify a less specific shape invariant for each loop
variable, which is needed if the shape varies between iterations. The
tf.Tensor.set_shape
function may also be used in the body function to indicate that
the output loop variable has a particular shape. The shape invariant for
SparseTensor and IndexedSlices are treated specially as follows:

a) If a loop variable is a SparseTensor, the shape invariant must be
TensorShape([r]) where r is the rank of the dense tensor represented
by the sparse tensor. It means the shapes of the three tensors of the
SparseTensor are ([None], [None, r], [r]). NOTE: The shape invariant here
is the shape of the SparseTensor.dense_shape property. It must be the shape of
a vector.

b) If a loop variable is an IndexedSlices, the shape invariant must be
a shape invariant of the values tensor of the IndexedSlices. It means
the shapes of the three tensors of the IndexedSlices are (shape, [shape[0]],
[shape.ndims]).

while_loop implements non-strict semantics, enabling multiple iterations
to run in parallel. The maximum number of parallel iterations can be
controlled by parallel_iterations, which gives users some control over
memory consumption and execution order. For correct programs, while_loop
should return the same result for any parallel_iterations > 0.

For training, TensorFlow stores the tensors that are produced in the
forward inference and are needed in back propagation. These tensors are a
main source of memory consumption and often cause OOM errors when training
on GPUs. When the flag swap_memory is true, we swap out these tensors from
GPU to CPU. This for example allows us to train RNN models with very long
sequences and large batches.


	参数

	
	cond – A callable that represents the termination condition of the loop.


	body – A callable that represents the loop body.


	loop_vars – A (possibly nested) tuple, namedtuple or list of numpy array,
Tensor, and TensorArray objects.


	shape_invariants – The shape invariants for the loop variables.


	parallel_iterations – The number of iterations allowed to run in parallel. It
must be a positive integer.


	back_prop – (optional) Deprecated. False disables support for back
propagation. Prefer using tf.stop_gradient instead.


	swap_memory – Whether GPU-CPU memory swap is enabled for this loop.


	maximum_iterations – Optional maximum number of iterations of the while loop
to run.  If provided, the cond output is AND-ed with an additional
condition ensuring the number of iterations executed is no greater than
maximum_iterations.


	name – Optional name prefix for the returned tensors.






	返回

	
	The output tensors for the loop variables after the loop. The return value

	has the same structure as loop_vars.









	Raises

	
	TypeError – if cond or body is not callable.


	ValueError – if loop_vars is empty.








Example:

`python
i = tf.constant(0)
c = lambda i: tf.less(i, 10)
b = lambda i: (tf.add(i, 1), )
r = tf.while_loop(c, b, [i])
`

Example with nesting and a namedtuple:

`python
import collections
Pair = collections.namedtuple('Pair', 'j, k')
ijk_0 = (tf.constant(0), Pair(tf.constant(1), tf.constant(2)))
c = lambda i, p: i < 10
b = lambda i, p: (i + 1, Pair((p.j + p.k), (p.j - p.k)))
ijk_final = tf.while_loop(c, b, ijk_0)
`

Example using shape_invariants:

```python
i0 = tf.constant(0)
m0 = tf.ones([2, 2])
c = lambda i, m: i < 10
b = lambda i, m: [i+1, tf.concat([m, m], axis=0)]
tf.while_loop(


c, b, loop_vars=[i0, m0],
shape_invariants=[i0.get_shape(), tf.TensorShape([None, 2])])




```

Example which demonstrates non-strict semantics: In the following
example, the final value of the counter i does not depend on x. So
the while_loop can increment the counter parallel to updates of x.
However, because the loop counter at one loop iteration depends
on the value at the previous iteration, the loop counter itself cannot
be incremented in parallel. Hence if we just want the final value of the
counter (which we print on the line print(sess.run(i))), then
x will never be incremented, but the counter will be updated on a
single thread. Conversely, if we want the value of the output (which we
print on the line print(sess.run(out).shape)), then the counter may be
incremented on its own thread, while x can be incremented in
parallel on a separate thread. In the extreme case, it is conceivable
that the thread incrementing the counter runs until completion before
x is incremented even a single time. The only thing that can never
happen is that the thread updating x can never get ahead of the
counter thread because the thread incrementing x depends on the value
of the counter.

```python
import tensorflow as tf

n = 10000
x = tf.constant(list(range(n)))
c = lambda i, x: i < n
b = lambda i, x: (tf.compat.v1.Print(i + 1, [i]), tf.compat.v1.Print(x + 1,
[i], “x:”))
i, out = tf.while_loop(c, b, (0, x))
with tf.compat.v1.Session() as sess:


print(sess.run(i))  # prints [0] … [9999]

# The following line may increment the counter and x in parallel.
# The counter thread may get ahead of the other thread, but not the
# other way around. So you may see things like
# [9996] x:[9987]
# meaning that the counter thread is on iteration 9996,
# while the other thread is on iteration 9987
print(sess.run(out).shape)




```






	
tensorflow.zeros(shape, dtype=tf.float32, name=None)

	Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

>>> tf.zeros([3, 4], tf.int32)
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int32)>






	参数

	
	shape – A list of integers, a tuple of integers, or
a 1-D Tensor of type int32.


	dtype – The DType of an element in the resulting Tensor.


	name – Optional string. A name for the operation.






	返回

	A Tensor with all elements set to zero.










	
tensorflow.zeros_initializer

	tensorflow.python.ops.init_ops_v2.Zeros 的别名






	
tensorflow.zeros_like(input, dtype=None, name=None)

	Creates a tensor with all elements set to zero.

See also tf.zeros.

Given a single tensor or array-like object (input), this operation returns
a tensor of the same type and shape as input with all elements set to zero.
Optionally, you can use dtype to specify a new type for the returned tensor.

实际案例

>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.zeros_like(tensor)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
       [0, 0, 0]], dtype=int32)>





>>> tf.zeros_like(tensor, dtype=tf.float32)
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0., 0., 0.],
       [0., 0., 0.]], dtype=float32)>





>>> tf.zeros_like([[1, 2, 3], [4, 5, 6]])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
       [0, 0, 0]], dtype=int32)>






	参数

	
	input – A Tensor or array-like object.


	dtype – A type for the returned Tensor. Must be float16, float32,
float64, int8, uint8, int16, uint16, int32, int64,
complex64, complex128, bool or string (optional).


	name – A name for the operation (optional).






	返回

	A Tensor with all elements set to zero.
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